Question

A uniform spherical shell of mass M = 16.0 kg and radius R = 0.690 m...

A uniform spherical shell of mass M = 16.0 kg and radius R = 0.690 m can rotate about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 0.140 kg·m2 and radius r = 0.110 m, and is attached to a small object of mass m = 3.10 kg. There is no friction on the pulley's axle; the cord does not slip on the pulley. What is the speed of the object when it has fallen a distance 1.06 m after being released from rest? Use energy considerations.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A uniform spherical shell of mass M = 16.0 kg and radius R = 0.690 m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A uniform spherical shell of mass M = 3.0kg and radius R = 12.0...

    A uniform spherical shell of mass M = 3.0kg and radius R = 12.0 cm rotates about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 2.38×10-3 kg m2 and radius r = 5.0 cm, and its attached to a small object of mass m = 1.0 kg. There is no friction on the pulley's axle; the cord does not slip on...

  • 4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates...

    4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the sphere, over a pulley of rotational inertia 1-1.60 kg. m2, and radius r = 0.40 m, and is attached to a block of mass m 8.00 kg which is released from rest. The cord does not slip on the sphere or pulley, and the pulley bearings are frictionless....

  • A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure...

    A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure below). Let the rotational inertia of the sphere behe.A massless cord passes around the equator of the sphere, overs pulley with rotational inertial and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle and the cord does not slip on the pulley. Att 0, the mass m has speed Vo The system is...

  • A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure...

    A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure below). Let the rotational inertia of the sphere be A massless cord passes around the equator of the sphere, over a pulley with rotational inertial and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle and the cord does not slip on the pulley. At 1 = 0, the mass m has speed...

  • A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure...

    A sphere of radius R can rotate about a vertical axis on frictionless bearings (see figure below). Let the rotational inertia of the sphere be Isphere. A massless cord passes around the equator of the sphere, over a pulley with rotational inertia I pulley and radius r, and is attached to a small object of mass m. There is no friction on the pulley's axle and the cord does not slip on the pulley. At t = 0, the mass...

  • MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported...

    MR A pulley of mass 3M and radius R is mounted on ftictionless bearings and supported by a stand of mass 4M at rest on a table as shown to the right. The rotational inertia of this pulley about its axis is (3/2)MR2. Passing over the pulley is a massless cord supporting a block of mass M on the left and a block of mass 2M on the right. The cord does not slip on the pulley, so after the...

  • A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around...

    A block (mass = 2.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.6 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...

  • An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass

    An object of mass m1 = 4.50 kg is connected by a light cord to an object of mass m2 = 3.00 kg on a frictionless surface (see figure). The pulley rotates about a frictionless axle and has a moment of inertia of 0.570 kg · m² and a radius of 0.310 m. Assume that the cord does not slip on the pulley. (a) Find the acceleration of the two masses. m/s2 (b) Find the tensions T1 and T2

  • Fall I- 2017 Exam2-GeneralPhysics」 00 5 of 6 problems,A 6" problem will count towards extra credit,...

    Fall I- 2017 Exam2-GeneralPhysics」 00 5 of 6 problems,A 6" problem will count towards extra credit, 1. Conservation of Linear Momentum gure 1. A pendulum of string length 20 cm and bob mass of 1 kg at its end, starts from rest. The pendulum -on with a block of mass 2 kg, initially at rest. The collision is swings down a quarter of a circle and collides head elastic. Neglect the mass of the string. (a) Find the speed of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT