Question

A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s and of moment...

A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s and of moment of inertia 3.0 kg.m2. By changing the position of her arms, the skater decreases her moment of inertia to one-half its initial value. What is the skater's initial kinetic energy?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s and of moment...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 6. Teeny, the 3,750 kg ice skating elephant, begins a spin with an angular speed of...

    6. Teeny, the 3,750 kg ice skating elephant, begins a spin with an angular speed of 7.5 rad/s. By changing the position of her forelimbs, head, and trunk, the ice skating elephant decreases her moment of inertia to one-half its initial value. Find Teeny's new angular speed.

  • An ice skater spinning with outstretched arms has an angular speed of 5.0rad/s . She tucks...

    An ice skater spinning with outstretched arms has an angular speed of 5.0rad/s . She tucks in her arms, decreasing her moment of inertia by 29% . What is the resulting angular speed? rad/s By what factor does the skater's kinetic energy change? (Neglect any frictional effects.) where does the extra kinetic energy come from?

  • An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a...

    An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m2 with her arms extended. When she pulls her arms in, her rotational inertia is reduced to If=1.05 kg.m2 . Assume no external torques act. a) Determine her initial angular speed in rad/s. (1 marks) b) Calculate her final angular speed in RPM (4 marks) c) Calculate the period of rotation when she is at her final speed (1...

  • Question 8 (6 points) A 60.0-kg skater is spinning at 0.800 rev/s with her arms and...

    Question 8 (6 points) A 60.0-kg skater is spinning at 0.800 rev/s with her arms and legs extended outward. In this position her moment of inertia with respect to the vertical axis about which she is spinning is 6.00 kg•m?. She pulls her arms and legs in close to her body changing her moment of inertia to 2.00 kg•m². What is her final angular velocity in rad/s? a) 8.71 rad/s b) 15.1 rad/s c) 2.40 rad/s d) 0.800 rad/s e)...

  • 1. An ice skater spins on the ice with her arms positioned tight against her body....

    1. An ice skater spins on the ice with her arms positioned tight against her body. In this position, she has a moment of inertia of 1.3 kg m2 and an angular speed of 15 rad/s. If the ice skater then stretches out her arms, and her angular speed slows to 6.0 rad/s, what is her moment of inertia with her arms outstretched? 3.64 kg m2 4.91 kg m2 3.25 kg.m2 4.39 kg m2 6.11 kg m2 А В С...

  • An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m...

    An ice- skater is initially spinning at an angular speed ω = 1.35 revolutions/s with a rotational inertia Ii = 2.30 kg.m2 with her arms extended. When she pulls her arms in, her rotational inertia is reduced to If=1.05 kg.m2 . Assume no external torques act. a) Determine her initial angular speed in rad/s. (1 marks) b) Calculate her final angular speed in RPM (4 marks) c) Calculate the period of rotation when she is at her final speed (1...

  • The outstretched hands and arms of a figure skater preparing for a spin can be considered...

    The outstretched hands and arms of a figure skater preparing for a spin can be considered a slender rod pivoting about an axis through its center ( Ibar = 1 12 mℓ2 where ℓ is the length of the bar ). When the skater's hands and arms are brought in and wrapped around their body to execute the spin, the hands and arms can be considered a thin-walled hollow cylinder. The hands and arms have a combined mass 10 kg....

  • Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s...

    Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg · m2. (a) Calculate the angular momentum, in kg . m/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg . m2. kg. m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his...

  • (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg.m2 kg-m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg m-) if his angular velocity drops to 1.00 rev/s. kg-m2 (c) suppose instead he keeps his arms in and allows friction with the ice to slow...

  • (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment...

    (a) Calculate the angular momentum of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.300 kg · m2. _____kg · m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia if his angular velocity drops to 1.75 rev/s. ______kg · m2 (c) Suppose instead he keeps his arms in and allows friction with the ice to...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT