Question

Question 8 (6 points) A 60.0-kg skater is spinning at 0.800 rev/s with her arms and legs extended outward. In this position h
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Initial Angular speed (N) = 0.8 reuls Angulari velocity (w,,= 2nN W-2 IT X0.8 = 5.0265. radle 6 Initial moment of inentia (1,

Add a comment
Know the answer?
Add Answer to:
Question 8 (6 points) A 60.0-kg skater is spinning at 0.800 rev/s with her arms and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s...

    Calculate the angular momentum, in kg · m2/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg · m2. (a) Calculate the angular momentum, in kg . m/s, of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.330 kg . m2. kg. m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his...

  • 3. An ice skater starts spinning at a rate of 2.0 rev/s with their arms extended....

    3. An ice skater starts spinning at a rate of 2.0 rev/s with their arms extended. They then pull their arms in toward their body reducing their moment of inertia by ¼, what is the angular velocity of the skater with their arms pulled in?

  • (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg•m?/s) of an Ice skater spinning at 6.00 rev/s given his moment of inertila is 0.350 kg-m?. kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m? if his angular velocity drops to 2.05 rev/s. kom? (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m"/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg-m kg-m /s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m2) if his angular velocity drops to 1.35 rev/s. (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m2/s) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.470 kg.m2 kg-m2/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg m-) if his angular velocity drops to 1.00 rev/s. kg-m2 (c) suppose instead he keeps his arms in and allows friction with the ice to slow...

  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s and of moment...

    A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s and of moment of inertia 3.0 kg.m2. By changing the position of her arms, the skater decreases her moment of inertia to one-half its initial value. What is the skater's initial kinetic energy?

  • (a) Calculate the angular momentum (in kg.m/5) of an ice skater spinning at 6.00 rev/s given...

    (a) Calculate the angular momentum (in kg.m/5) of an ice skater spinning at 6.00 rev/s given his moment of inertia is 0.370 kg.m. kg-m/s (b) He reduces his rate of spin (his angular velocity) by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kg-m2) if his angular velocity drops to 1.70 rev/s. kg.m (c) Suppose instead he keeps his arms in and allows friction with the ice to slow him...

  • What is the angular momentum of a figure skater spinning at 3.5 rev/s with arms in...

    What is the angular momentum of a figure skater spinning at 3.5 rev/s with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.6 m , a radius of 13 cm, and a mass of 60 kg? B.) How much torque is required to slow her to a stop in 5.8 s, assuming she does not move her arms?

  • A 45 kg figure skater is spinning on the toes of her skates at 1.0 rev/s....

    A 45 kg figure skater is spinning on the toes of her skates at 1.0 rev/s. Her arms are outstretched as far as they will go. In this orientation, the skater can be modeled as a cylindrical torso (40 kg, 20 cm average diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 66 cm long) attached to the outside of the torso. The skater then raises her arms straight above her head, where she appears to be a...

  • An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24...

    An ice skater is spinning at 6.8 rev/s and has a moment of inertia of 0.24 kg ⋅ m2. Calculate the angular momentum, in kilogram meters squared per second, of the ice skater spinning at 6.8 rev/s. He reduces his rate of rotation by extending his arms and increasing his moment of inertia. Find the value of his moment of inertia (in kilogram meters squared) if his rate of rotation decreases to 1.25 rev/s. Suppose instead he keeps his arms...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT