Question

A road safety problem. A corner in a flat road has a constant radius of r...

A road safety problem. A corner in a flat road has a constant radius of r = 25 \text{ m}r=25 m. Air resistance and rolling resistance are zero. (Hey, I want a car like that!), and the car is travelling at constant speed.

What is the maximum speed our car can go round this corner without skidding? For a reasonably clean, dry road, take the coefficients of static and kinetic friction to be \mu_{s} = 1.0μs​=1.0 and \mu_{k} = 0.80μk​=0.80. Hint: What horizontal force is acting on the car?

Maximum speed _____ kph

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A road safety problem. A corner in a flat road has a constant radius of r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A car travelling on a flat road enters a turn with a radius of 30 meters...

    A car travelling on a flat road enters a turn with a radius of 30 meters at a speed of 28 m/s. Will the car make the turn without skidding? You can leave the variable for mass as m.

  • A flat (unbanked) curve on a highway has a radius of 250 m

    A flat (unbanked) curve on a highway has a radius of 250 m. A car successfully rounds the curve at a speed of 35 m/s but is on the verge of skidding out. a. Draw free body diagram of the car. b. If the coefficient of static friction between the car's tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve without slipping? c. Suppose the coefficient of friction were increased...

  • 1) A car with mass m = 1000 kg is traveling around a circular curve of...

    1) A car with mass m = 1000 kg is traveling around a circular curve of radius r = 990 m when it begins to rain. The coefficients of static friction between the road and tires is μd = 0.66 when dry and μw = 0.26 when wet. a) Write an expression for the maximum magnitude of the force of static friction Ff acting on the car if μs is the coefficient of friction. b) What is the maximum tangential...

  • A flat (unbanked) curve on a highway has a radius of 240 m . A car...

    A flat (unbanked) curve on a highway has a radius of 240 m . A car successfully rounds the curve at a speed of 37 m/s but is on the verge of skidding out. Part A If the coefficient of static friction between the car’s tires and the road surface were reduced by a factor of 2, with what maximum speed could the car round the curve? Express your answer in meters per second to two significant figures. part B...

  • 1000 kg car rounds a curve on a flat road of radius 20 m. if the...

    1000 kg car rounds a curve on a flat road of radius 20 m. if the force of friction between dry pavement and tire is 5800 N, what is the maximum speed the car can safely make the turn?

  • A car travels at constant speed around a corner. The cars speed is 35 m/s and...

    A car travels at constant speed around a corner. The cars speed is 35 m/s and the radius of the circle is 0.25 km. The coefficient of static friction between the tires and the road is 0.7. What is the frictional force needed for the car to make the turn? What is the maximum force the static friction can produce? Does the car stay on the road? The car is in motion so why is the static friction important?

  • gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates...

    gth of the Cirrl 1. A 1300 kg car moving on a flat, horizontal road negotiates a curve as shown in figure. If the radius of the curve is 40 m and the coefficient of static friction between the tires and dry pavement is 0.6, find the maximum speed the car can have and still make the turn successfully.

  • A car is travelling at a flat circular track of radius 25 m and tries to...

    A car is travelling at a flat circular track of radius 25 m and tries to go around at 40 m/sec. a) What should the coefficient of static friction be so the car won’t skid? b) Assume the same car is now travelling at a banked circular track at angle 25o , r=25 m and with same speed. What’s the value of the coefficient of static friction in order for the car not to slide down? c) What would the...

  • 1. A car travels at constant speed around a horizontal circular corner of radius 5 m....

    1. A car travels at constant speed around a horizontal circular corner of radius 5 m. n (a) Given that the car just starts to skid if its speed is 12 km/h, find the frictional force acting on the car. (b) Assuming the same frictional force is acting, calculate the car's smallest possible turning radius if the speed is 30 km/h. (c) Calculate the turning radius for the car travelling at 12 km/h in wet conditions where the frictional force...

  • TR PROBLEMS: Show your 1. A 1800 Kg car moves around a flat circular road of...

    TR PROBLEMS: Show your 1. A 1800 Kg car moves around a flat circular road of radius R- 100 m friction available between the tire and the road is 10368 N. Calculate (A) car can have so that it does not get out of the curve (B) the time alLoroblems radius R-100 m. The maximum amount ef (C) the new radius of the bigger circle the car moves on if it moves at a higher s the maxinmum speed the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT