Question

Two consecutive resonant frequencies are 350 Hz and 450 Hz. Is this resonance for an open...

Two consecutive resonant frequencies are 350 Hz and 450 Hz.

Is this resonance for an open or a closed pipe? Explain how you can tell.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two consecutive resonant frequencies are 350 Hz and 450 Hz. Is this resonance for an open...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3: A certain pipe has resonant frequencies of 234 Hz, 390 Hz, and 546 Hz,...

    Problem 3: A certain pipe has resonant frequencies of 234 Hz, 390 Hz, and 546 Hz, with no other resonant frequencies between these values. (Hint: The lower frequency is not necessarily the pipe fundamental frequency) (a) Show that the difference of frequency between two adjacent harmonics has the same expression for a pipe open at both ends as for a pipe closed at one end (b) How long is this pipe? (c) Is this a pipe open at both ends...

  • A certain pipe has resonant frequencies of 165 Hz, 275 Hz, and 385 Hz, with no...

    A certain pipe has resonant frequencies of 165 Hz, 275 Hz, and 385 Hz, with no other resonant frequencies between these values. (a) Is this a pipe open at both ends or closed at one end? (b) What is the fundamental frequency of this pipe? (c) How long is this pipe? (Use the speed of sound in air at 20°C.)

  • explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and...

    explain please *Question 160: Resonant Frequencies A piece of pipe is closed at one end and open at the other. The standing wave with the lowest frequency (the fundamental) occurs at frequency 100 Hz. What is the frequency of the first overtone (the next highest standing wave frequency)? Select one: a. 200 Hz b. 150 Hz c. No other standing waves are possible in a pipe open at one end only d. 67 Hz e. 300 Hz The correct answer...

  • In an air pipe, closed at one end, the three successive resonance frequencies are 425 Hz,...

    In an air pipe, closed at one end, the three successive resonance frequencies are 425 Hz, 595 Hz, and 765 Hz. If the speed of sound in air is 340 m/s, what is the length of the pipe?

  • The lowest two resonant (standing wave) frequencies possible for a particular closed tube are 200 Hz...

    The lowest two resonant (standing wave) frequencies possible for a particular closed tube are 200 Hz apart. What is the frequency of the 1 st harmonic for this tube when both sides are opened? 200 Hz 250 Hz 300 Hz 350 Hz 400 Hz numbers 20-21 A 1.2 m closed tube resonates at the 5th harmonic. What is the wavelength? 0.84 m 0.96 m 1.08 m 1.20 m 1.32 m Which of the following distances from the open end will...

  • Question 1 Atube with one end open and one end closed creates two consecutive harmonic frequencies...

    Question 1 Atube with one end open and one end closed creates two consecutive harmonic frequencies at 300 Hz and 330 Hz. If the speed of sound in air is 343 m/s, answer the following questions. a. What is the fundamental frequency of the tube? b. What is the length of the tube? c. If mith frequency is 300 Hz, find 91. 5+5+5

  • If you model the tube as an open-closed system, what are the first three resonant frequencies?...

    If you model the tube as an open-closed system, what are the first three resonant frequencies? Assume a speed of sound of 350 m/s. Parasaurolophus in (Figure 1) was a dinosaur whose distinguishing feature was a hollow crest on the head. The 1.3 - m - long hollow tube in the crest had connections to the nose and throat, leading some Enter your answers using two significant figures in ascending order separated by commas.

  • im confused on all of this... Lab-Assignment 23 Resonance 7/30/20 Resonance is the dramatic amplification of...

    im confused on all of this... Lab-Assignment 23 Resonance 7/30/20 Resonance is the dramatic amplification of vibrational amplitude due to a force vibrating an object at its characteristic frequency Resonance for an open organ pipe occurs when there is an antinode at both ends of the pipe. All harmonic frequencies are integer multiples of the smallest frequency to match this boundary condition. The smallest frequency consists of half of a cycle. Resonance for a closed organ pipe occurs when there...

  • A 146-cm-long pipe is stopped at one end. Near the open end, there is a loudspeaker...

    A 146-cm-long pipe is stopped at one end. Near the open end, there is a loudspeaker that is driven by an audio oscillator whose frequency can be varied from 10.0 to 4700 Hz. (Take the speed of sound to be 343 m/s.) (a) What is the lowest frequency of the oscillator that will produce resonance within the tube?   Hz (b) What is the highest frequency that will produce resonance?   Hz (c) How many different frequencies of the oscillator will produce...

  • SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s...

    SOLUTION (A) Find the frequencies if the pipe is open at both ends. _V 343 m/s Substitute into whole harmonics equation, with n = 1. 11-222(2.46 m) = 69.7 Hz Multiply to find the second and third harmonics. 12 - 27 - 139 Hz 13 = 3f7 - 209 Hz (B) How many harmonics lle between 20 Hz and 20000 Hz for this pipe? 343 m/s Set the frequency in the harmonics equation equal to 2.00 x 104 Hz and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT