Question

A satellite m = 500 kg orbits the earth at a distance d = 218 km,...

A satellite m = 500 kg orbits the earth at a distance d = 218 km, above the surface of the planet. The radius of the earth is re = 6.38 × 106 m and the gravitational constant G = 6.67 × 10-11 N m2/kg2 and the Earth's mass is me = 5.98 × 1024 kg.

What is the speed of the satellite in m/s?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A satellite m = 500 kg orbits the earth at a distance d = 218 km,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A satellite used in a cellular telephone network has a mass of 2380 kg and is...

    A satellite used in a cellular telephone network has a mass of 2380 kg and is in a circular orbit at a height of 850 km above the surface of the earth. Part A What is the gravitational force Fgrav on the satellite? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 , the mass of the earth to be me = 5.97×1024 kg , and the radius of the Earth to be re = 6.38×106 m

  • A satellite used in a cellular telephone network has a mass of 2050 kg and is...

    A satellite used in a cellular telephone network has a mass of 2050 kg and is in a circular orbit at a height of 880 km above the surface of the earth. Part A What is the gravitational force Fgrav on the satellite? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 , the mass of the earth to be me = 5.97×1024 kg , and the radius of the Earth to be re = 6.38×106 m . part...

  • A 1480 kg satellite orbits the Earth at an altitude of 61.6 km. It is desired...

    A 1480 kg satellite orbits the Earth at an altitude of 61.6 km. It is desired to increase the altitude of the orbit to 285 km. How much energy must be added to the system to effect this change in altitude? The universal gravitational constant is 6.67259 × 10^−11 N · m2/kg2 , the radius of the Earth is 6.37×10^6 m, and its mass is 5.98×10^24 kg.

  • Consider a 495 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 495 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and Me = 5.97 x 1024 kg,...

  • Consider a 475 kg satellite in a circular orbit at a distance of 3.06 x 104...

    Consider a 475 kg satellite in a circular orbit at a distance of 3.06 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 109 km and Me = 5.97 x 1024 kg,...

  • A 507 kg satellite is in a circular orbit at an altitude of 754 km above...

    A 507 kg satellite is in a circular orbit at an altitude of 754 km above a planet’s surface. This planet is similar to our Earth. Because of air friction, the satellite eventually is brought to the Earth’s surface, and it hits the Earth with a speed of 3 km/s. The radius of the planet is 7 × 106 m and its mass is 8 × 1024 kg. The gravitational constant is 6.67259 × 10−11 N m2 /kg2. How much...

  • Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re = 6.37 % 10% km and Me = 5.97 x 1024 kg,...

  • Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.02 x 104 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 107 km above the Earth's surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 109 km and Me = 5.97 x 1024 kg,...

  • A satellite is in a circular orbit about the Earth at a distance of four (4)...

    A satellite is in a circular orbit about the Earth at a distance of four (4) Earth radii above the surface of the Earth. What is the velocity of the satellite? (Earth's mass: ME = 5.98 x 1024 kg; the radius of the Earth: 6.4 x 106m ; G = 6.67 x 10-11 Nm2/kg2 ). A) 4,072.5 m/s B)3,530.5 m/s C)5,582.2 m/s D)7,465.9 m/s

  • Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10...

    Consider a 455 kg satellite in a circular orbit at a distance of 3.06 x 10 km above the Earth's surface. What is the minimum amount of work W the satellite's thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 X 10 km above the Earth's surface. The radius of the Earth and the mass of the Earth are Re = 6,37 x 10 km and Me = 5.97 x 10 kg,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT