Question

Two identical springs of equilibrium length L and spring stiffness k are attached to opposite sides...

Two identical springs of equilibrium length L and spring stiffness k are attached to opposite sides of a block of mass M totwo parallel walls a distance 2D from each other, where D < L. At what positions will the block be stable?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two identical springs of equilibrium length L and spring stiffness k are attached to opposite sides...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question: A block with mass of m = 3.78 kg is attached to springs with spring...

    Question: A block with mass of m = 3.78 kg is attached to springs with spring constants of ki = 18.1 N/m and k = 25.6 N/m, in different configurations shown in the figures below. Assume in all these cases that friction is negligible. Part 1) You will need to calculate the period of oscillations for each situation In this situation the mass is connected between the two springs which are each connected to opposite walls (Figure 1). What is...

  • Five springs with different spring constants k, and unstretched lengths L, are attached to each o...

    please solve by hand, intermediate steps appreciated. thanks! Five springs with different spring constants k, and unstretched lengths L, are attached to each other in series. The endpoint B is then displaced such that the distance between points A and B is L = 1.2 m. The four equations that govern the motions of the springs are shown below. Use Gauss elimination method to determine the positions xi,2, , x4 of the endpoints of the springs. The spring constants and...

  • A particle P of mass m kg is attached to two fixed points A and B by two identical model springs,...

    A particle P of mass m kg is attached to two fixed points A and B by two identical model springs, each of stiffness k and natural length lo- The point A is at a height 1/o above the point B. The particle is free to oscillate vertically under gravity. The stiffness of each spring is given by k = 4mg/10. The horizontal level passing through the fixed point A is taken as the datum for the gravitational potential energy....

  • A2. Two identical simple pendulums are connected via a spring as it is shown in Figure A2. The length of the pendulum strut L-0.5m and the mass of attached bob m-2kg, the stiffness coefficient of the...

    A2. Two identical simple pendulums are connected via a spring as it is shown in Figure A2. The length of the pendulum strut L-0.5m and the mass of attached bob m-2kg, the stiffness coefficient of the connecting spring is k-80Ns/m. 02 Figure A2. a) Using the free-body diagram method derive the following governing equations for the coupled pendulum system which are given below in matrix form b) Using the characteristic equation method or transformation to principal coordinates find out two...

  • In the figure below, two identical springs of spring constant 7500 N/m are attached to a...

    In the figure below, two identical springs of spring constant 7500 N/m are attached to a block of mass 0.300 kg. What is the frequency of oscillation on the frictionless floor? Give your answer in Hz

  • A spring with spring constant k and equilibrium length rho degree hangs from the ceiling. A...

    A spring with spring constant k and equilibrium length rho degree hangs from the ceiling. A block of mass m is attached to the spring and released from rest at a distance of rho degree from the ceiling (i.e. the equilibrium length of the spring), as shown in figure on right. The block then undergoes simple harmonic motion. Sketch the vertical position of the block as a function of time, including three full oscillation periods. hat is the maximum sped...

  • A block with mass m = 7 kg is attached to two springs with spring constants...

    A block with mass m = 7 kg is attached to two springs with spring constants kleft = 37 N/m and kright = 48 N/m. The block is pulled a distance x = 0.21 m to the left of its equilibrium position and released from rest. 6)What is the magnitude of the acceleration of the block as it passes through equilibrium? 7)Where is the block located, relative to equilibrium, at a time 1.23 s after it is released? (if the...

  • A massless rod with length L is attached to two springs at its two masses (both...

    A massless rod with length L is attached to two springs at its two masses (both m) at its two ends. The masses are connected to springs. The springs can move in the horizontal and vertical directions as shown in the figure and they both have a stiffness k. Note that gravity acts. Assume the springs are un-stretched when the rod is vertical. Find the equation of motion for the system using 1. Newton’s second law 2. Conservation of energy....

  • The ends of two identical springs are connected.

    The ends of two identical springs are connected. Their unstretched lengths \(\ell\) are negligibly small and each has spring constant \(k\). After being connected, both springs are stretched an amount \(L\) and their free ends are anchored at \(y=0\) and \(x=\pm L\) as shown(Intro1figure). The point where the springs are connected to each other is now pulled to the position \((x, y)\). Assume that \((x, y)\) lies in the first quadrant.What is the potential energy of the thetwo-spring system after...

  • A block with mass m = 7.4 kg is attached to two springs with spring constants...

    A block with mass m = 7.4 kg is attached to two springs with spring constants kleft = 31 N/m and kright = 53 N/m. The block is pulled a distance x = 0.27 m to the left of its equilibrium position and released from rest. 7) Where is the block located, relative to equilibrium, at a time 1.04 s after it is released? (if the block is left of equilibrium give the answer as a negative value; if the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT