Question

A walk of length n in a graph G is an alternating sequence v0; e1; v1...

A walk of length n in a graph G is an alternating sequence v0; e1; v1 : : : ; vn of vertices and edges of G such that for all i is an element or 1; : : : ; n, ei is an edge relating vi-1 to vi. Show that for any finite graph G and walk v0; e1; v1 : : : ; vn in G, there exists a walk from v0 to vn with no repeated edges. (Hint: Use complete (strong) induction on the number of edges in the walk.) PLEASE USE STRONG INDUCTION.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let us induct on the number of edges n in the walk.

Base case: P(n) if n = 1 means, the graph has 1 edge and 2 vertices. Therefore, it is trivially true.

Inductive Hypothesis: We will assume that P(1) ... P(n) is true and we will show the strong induction to prove that P(n+1) also holds true.

Inductive Steps: Let us assume that graph G has n edges and n+1 vertices. Let's remove the last edge from Graph G. So, the resultant graph G' has n -1 edge and n vertices. By inductive hypothesis P(n) is true (as per the strong induction). Now, add the removed vertices to v_n in Graph G'. So, G' has a walk from v_0 to v_n and a path from v_n to v_n+1. Which basically implies that there is a walk from v_0 to v_n+1. Therefore P(n+1) also holds true.

Add a comment
Know the answer?
Add Answer to:
A walk of length n in a graph G is an alternating sequence v0; e1; v1...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Bonus 1 A walk in a graph G is a sequence of vertices V1, V2, ...,...

    Bonus 1 A walk in a graph G is a sequence of vertices V1, V2, ..., Uk such that {Vi, Vi+1} is an edge of G. Informally, a walk is a sequence of vertices where each step is taken along an edge. Note that a walk may visit the same vertex more than once. A closed walk is a walk where the first and last vertex are equal, i.e. v1 = Uk. The length of a walk is the number...

  • Consider the following graph. V(G) = {v1, v2, v3, v4}, e(G) = {e1, e2, e3, e4,...

    Consider the following graph. V(G) = {v1, v2, v3, v4}, e(G) = {e1, e2, e3, e4, e5}, E(G) = {(e1,[v1,v2]),(e2,[v2,v3]),(e3,[v3,v4]), (e4, (v4,v1)), (e5,[v1,v3])} Draw a picture of the graph on scratch paper to help you answer the following two questions. How many edges are in a spanning tree for graph G? What is the weight of a minimum-weight spanning tree for the graph G if the weight of an edge is defined to be W (ei) L]?

  • Prove that if G is a connected graph of order n ≥ 2, then the vertices...

    Prove that if G is a connected graph of order n ≥ 2, then the vertices of G can be listed as v1, v2, . . . , vn such that each vertex vi (2 ≤ i ≤ n) is adjacent to some vertex in the set {v1, v2, . . . , vi−1}.

  • Viterbi algorithm We can use dynamic programming on a directed graph G = (V, E) for...

    Viterbi algorithm We can use dynamic programming on a directed graph G = (V, E) for speech recognition. Each edge (u, v) in E is labeled with a sound s(u, v) from a finite set S of sounds. The labeled graph is a formal model of a person speaking a restricted language. Each path in the graph starting from a distinguished vertex v0 in V corresponds to a possible sequence of sounds produced by the model. The label of a...

  • Let G be a simple graph with 2n, n 2 vertices. Suppose there are at least n2 1 edges. Show that at least one triangle i...

    Let G be a simple graph with 2n, n 2 vertices. Suppose there are at least n2 1 edges. Show that at least one triangle is formed. Hint: Check n 2 first and then use induction Let G be a simple graph with 2n, n 2 vertices. Suppose there are at least n2 1 edges. Show that at least one triangle is formed. Hint: Check n 2 first and then use induction

  • 3. (10 points) Let G be an undirected graph with nodes vi,..Vn. The adja.- cency matriz represent...

    Please show work clearly. Thanks 3. (10 points) Let G be an undirected graph with nodes vi,..Vn. The adja.- cency matriz representation for G is the nx n matrix M given by: Mij-1 if there is an edge from v, to ty. and M,',-0 otherwise. A triangle is a set fvi, vjof 3 distinct vertices so that there is an edge from v, to vj, another from v to k and a third from vk to v. Give and analyze...

  • Question 1# (a) Let G be a connected graph and C a non-trivial circuit in G. Prove directly that if an edge e fa, b is...

    Question 1# (a) Let G be a connected graph and C a non-trivial circuit in G. Prove directly that if an edge e fa, b is removed from C then the subgraph S C G that remains is still connected. "Directly' means using only the definitions of the concepts involved, in this case connected' and 'circuit'. Hint: If z and y are vertices of G connected by path that includes e, is there an alternative path connecting x to y...

  • er (a) Let G be a connected graph and C a non-trivial circuit in G. Prove...

    er (a) Let G be a connected graph and C a non-trivial circuit in G. Prove directly that if an edge ={a, b} is removed from then the subgraph S CG that remains is still connected. Directly' means using only the definitions of the concepts involved, in this case 'connected' and 'circuit'. Hint: If r and y are vertices of G connected by path that includes e, is there an alternative path connecting x to y that avoids e? (b)...

  • A 2-coloring of an undirected graph with n vertices and m edges is the assignment of one of two colors (say, red or green) to each vertex of the graph

    A 2-coloring of an undirected graph with n vertices and m edges is the assignment of one of two colors (say, red or green) to each vertex of the graph, so that no two adjacent nodes have the same color. So, if there is an edge (u,v) in the graph, either node u is red and v is green or vice versa. Give an O(n + m) time algorithm (pseudocode!) to 2-colour a graph or determine that no such coloring...

  • (7) Let V = {ui, U2 . . . . Un} with n > 4. In...

    (7) Let V = {ui, U2 . . . . Un} with n > 4. In this exercise we will compute the probability that in a random graph with vertex set V we have that v and v2 have an edge between them or have an edge to a common vertex (i.e, have a common neighbour) (If you are troubled by my use of the term random we choose a graph on n vertices uniformly at random from the set...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT