Question

assume mars to be a uniform solid sphere of mass 6.42 x 10^23 kg and radius...

assume mars to be a uniform solid sphere of mass 6.42 x 10^23 kg and radius 3390 km. The length of day on mars is 24 hours and 37 minutes. Relative to its axis of rotation, calculate the planet's (a) angular speed (b) rotational kinetic energy (c) angular momentum

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
assume mars to be a uniform solid sphere of mass 6.42 x 10^23 kg and radius...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis al...

    (a) A uniform disk of mass 14 kg, thickness 0.5 m, and radius 0.4 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.5 s. What is the rotational angular momentum of the disk? What is the rotational kinetic...

  • Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of...

    Calculate the angular momentum for a rotating disk, sphere, and rod. (a) A uniform disk of mass 16 kg, thickness 0.5 m, and radius 0.9 m is located at the origin, oriented with its axis along the y axis. It rotates clockwise around its axis when viewed from above (that is, you stand at a point on the +y axis and look toward the origin at the disk). The disk makes one complete rotation every 0.7 s. What is the...

  • A uniform solid sphere of radius r=0.490 m and mass m=14.5 kg

    A uniform solid sphere of radius r=0.490 m and mass m=14.5 kg turns clockwise about a vertical axis through its center (when viewed from above), at an angular speed of 3.20 rad / s. What is its vector angular momentum about this axis?(Enter the magnitude in kg · m² / s.)

  • A uniform solid sphere with a mass M = 2.0 kg and a radius R =...

    A uniform solid sphere with a mass M = 2.0 kg and a radius R = 0.10 m is set into motion with an angular speed ωo = 70 rad/s. At t = 0 the sphere is dropped a short distance (without bouncing) onto a horizontal surface. There is friction between the sphere and the surface. Find (a) the angular speed of rotation when the sphere finally rolls without slipping at time t = T and (b) the amount of...

  • Planet X has a mass of 5.93x1024 kg , and a radius of 8401 km. The...

    Planet X has a mass of 5.93x1024 kg , and a radius of 8401 km. The planet rotates about its axis once every 8.04 hours. Determine the angular momentum of the planet about its rotation axis (assume a uniform sphere) .

  • A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal...

    A uniform thin rod of length 0.95 m and mass 1.2 kg lies in a horizontal plane and rotates in that plane about a pivot at one of its ends. The rod makes one rotation every 0.39 second and rotates clockwise as viewed from above its plane of rotation. A)Find the magnitude of the rod’s angular momentum about its rotation axis, in units of kgm^/s. b) find the rotational kinetic energy, in joules, of the rod described in part (a)....

  • A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.06 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m...

    A uniform solid disk of mass m = 3.08 kg and radius r = 0.200 m rotates about a fixed axis perpendicular to its face with angular frequency 6.09 rad/s. (a) Calculate the magnitude of the angular momentum of the disk when the axis of rotation passes through its center of mass. kg · m2/s (b) What is the magnitude of the angular momentum when the axis of rotation passes through a point midway between the center and the rim?...

  • 2. A rigid sphere with mass 20 Kg and radius 0.6 m is free to rotate...

    2. A rigid sphere with mass 20 Kg and radius 0.6 m is free to rotate around a fixed axis passing through its center (I = 2/5 mR2). The sphere is initially at rest. A force of 4 N is applied at the edge (or equator) of the sphere, tangent to the sphere and perpendicular to the sphere radius, generating a constant torque for 3 s. (i) Calculate the magnitude of the angular acceleration of the sphere. (ii) Calculate the...

  • 4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates...

    4, A uniform solid sphere of mass M 10.0 kg and radius R 0.50 m rotates about a vertical axis on frictionless bearings. A massless cord passes around the equator of the sphere, over a pulley of rotational inertia 1-1.60 kg. m2, and radius r = 0.40 m, and is attached to a block of mass m 8.00 kg which is released from rest. The cord does not slip on the sphere or pulley, and the pulley bearings are frictionless....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT