Question

A cycle where the working fluid is air (R = 287 J/kgK, k = Cp/Cv =...

A cycle where the working fluid is air (R = 287 J/kgK, k = Cp/Cv = 1.4) consists of the following processes 12 adiabatic compression from 100 kPa and 15 Celcious to 2 MPa 23 constant pressure heat addition to 1200Celcioius 34 adiabatic expansion 41 constant volume heat rejection Draw the cycle on the P-v Diagram and calculate  heat addition and heat rejection  work consumed and work produced  technical work consumed and technical work produced  the net work produced  the thermal efficiency of the cycle. Then, change the direction of the processes consisting the cycle, draw the cycle on the P-v Diagram, and calculate  heat addition and heat rejection  work consumed and work produced  technical work consumed and technical work produced  the net work consumed  the two COPs of the cycle.

Nothing is missing this is the exact question from the paper.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A cycle where the working fluid is air (R = 287 J/kgK, k = Cp/Cv =...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For air as a calorically perfect gas, Cp = 1004.5 J/(kgK), R = 287 J/(kgK) and...

    For air as a calorically perfect gas, Cp = 1004.5 J/(kgK), R = 287 J/(kgK) and y = 1.4. 2. For isentropic flow of a calorically perfect gas, begin with the equations, (p/p') = constant and {p/(PT)} = constant, and provide steps to obtain p, T equation. Then obtain the equation (p2/pı) = (T2/T2) V(-1).

  • An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following...

    An air-standard cycle is executed within a closed piston–cylinder system, and it consists of the following three processes: 1–2 V = Constant heat addition from 100 kPa and 30°C to 850 kPa 2–3 Isothermal expansion until V3 = 8.5V2 3–1 P = Constant heat rejection to the initial state Assume air has constant properties with cv = 0.718 kJ/kg·K, cp = 1.005 kJ/kg·K, R = 0.287 kJ/kg·K, and k = 1.4. Required information An air-standard cycle is executed within a...

  • Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of...

    Required information An air-standard cycle is executed within a closed piston-cylinder system, and it consists of the following three processes: 1-2 V Constant heat addition from 100 kPa and 34°C to 850 kPa 2-3 Isothermal expansion until V3-8.5V2 3-1 P Constant heat rejection to the initial state Assume air has constant properties with cv 0.718 kJ/kg-K, Cp 1.005 kJ/kg-K, R- 0.287 kJ/kg-K, and k-1.4 Determine the cycle thermal efficiency. The cycle thermal efficiency is 10.266

  • Please Plot with solution An air-standard cycle with constant specific heats is executed in a closed...

    Please Plot with solution An air-standard cycle with constant specific heats is executed in a closed system and is composed of the following four processes: 1-2 Isentropic compression from 100 kPa and 22°C to 600 kPa 2-3 v = constant heat addition to 1500 K 3-4 Isentropic expansion to 100 kPa 4-1 P= constant heat rejection to initial state Study the effect of varying the temperature after the constant-volume heat addition from 1500 K to 2500 K in steps of...

  • An ideal Otto cycle with air as the working fluid has a compression ratio of 7....

    An ideal Otto cycle with air as the working fluid has a compression ratio of 7. At the beginning of the compression process, air is at 90 kPa and 27°C, and volume of the cylinder v1 = 0.004 m3. The maximum cycle temperature is 1127°C. Taking into account constant specific heats at room temperature, determine, a) the heat rejection (2) b) the net work output (2) c) the thermal efficiency, and (2) d) the mean effective pressure for the cycle...

  • Surprise Quiz (1) The temperature at the beginning of the compression process of an air standard...

    Surprise Quiz (1) The temperature at the beginning of the compression process of an air standard Otto cycle with a compression ratio of 8 is 27 °C=540 R, the pressure is 105 Pa, and the cylinder volume is 5.66 x 104 m². The maximum temperature during the cycle is 1727 °C=3600R. For the compression and PI 3 expansion processes, use T3 = 3600°R isentropic equations from equation sheet. Tv*-* = T, v*-? PV = P, V. n=11 - T3 =...

  • 5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for...

    5) Otto Cycle In this problem, you will analyze the performance of an air-standard Otto cycle for two cases: 1) variable specific heats of air and 2) constant specific heats of air evaluated at 300 K. The following information is given for the cycle: .The pressure and temperature, respectively, are 100 kPa and 300 K at the beginning of compressionn The compression ratio is 9 . The heat addition per unit mass of air is 1350 kJ/kg For each case,...

  • Analyze a Diesel cycle using a constant specific heat air standard model (cP = 1.004 kJ/kg-K,...

    Analyze a Diesel cycle using a constant specific heat air standard model (cP = 1.004 kJ/kg-K, R = 0.287 kJ/kg-K) with the following properties: The temperature and pressure at the beginning of the compression stroke are 300 K and 100 kPa, the compression ratio is 22, and the specific heat addition is 800 kJ/kg. Find the thermal efficiency, cut off ratio, maximum temperature in the cycle, and maximum pressure in the cycle.

  • A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle...

    A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series: • Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. • Process 2-3: Polytropic expansion with n = 1.3 to p3 = 0.3 MPa. • Process 3-4: Constant-pressure compression to ν4 = ν1. • Process 4-1: Constant-volume heating. a) Sketch the cycle on a p-ν diagram. b) Calculate the work...

  • Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10...

    Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 10 Mpa, 560 C with a mass flow rate of 7.8kg/s and exits at 8 kPa. Saturated liquid enters the pump at 8 kPa. The isentropic turbine efficiency is 85%, and the isentropic pump efficiency is 85%. Cooling water enters the adiabatic condenser at 18 C and exits at 36 C with no significant change in pressure and assuming the specific heat of the cooling...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT