Question

Block M1 weighs 8 kg and is moving on an inclined surface with µ=.65 and an...

Block M1 weighs 8 kg and is moving on an inclined surface with µ=.65 and an angle of 30 degrees above the horizontal. The block is connected to a pulley that has a hanging mass of 25 kg. ignore the mass of the connecting cable and the and the friction of the wheel. Calculate the acceleration and the tension on the cable.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Block M1 weighs 8 kg and is moving on an inclined surface with µ=.65 and an...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • The figure below shows an object of mass m1 = 1.0 kg on an inclined surface....

    The figure below shows an object of mass m1 = 1.0 kg on an inclined surface. The angle of the inclined surface is θ = 30° with the horizontal. The object m1 is connected to a second object of mass m2 = 2.5 kg on a horizontal surface below an overhang that is formed by the inclined surface. Further, an external force of magnitude Fext = 10 N is exerted on the object with mass m1. We observe both objects...

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 23.0 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.30. (Assume gravity acts toward the +ydirection and the +x-axis is parallel to the surface and to the right.) (a) What is...

  • rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined...

    rni 0 A block of mass m1- 21.9 kg is at rest on a plane inclined at 28.0 above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2-24.1 kg, as shown in the figure. The coefficient kinetic friction between block 1 and the inclined plane is μ,-0.15. If the blocks are released from rest, what is the acceleration of m2? what is a tension force T on the rope?

  • Please help, I dont understand this... A block of mass m1 = 34 kg on a...

    Please help, I dont understand this... A block of mass m1 = 34 kg on a horizontal surface is connected to a mass m2 = 16.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.23. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? (b)...

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

  • Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg...

    Rope connected two objects in the inclined plane, A block of mass m1 = 22.9 kg is at rest on a plane inclined at Theta = 35.0 degree above the horizontal. The block is connected via a rope and mass less pulley system to another block of mass m2 = 26.1 kg. as shown in the figure. The coefficients of static and kinetic friction between block 1 and the inclined plane Is MU_s is unknown. If the blocks are released...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT