Question

How do the addition of inert electrolytes influence the equilibrium constants calculated using concentrations?

How do the addition of inert electrolytes influence the equilibrium constants calculated using concentrations?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

■ concentration is defined as the number of moles per unit volume.

Concentration = (no of moles /volume)

So two cases are possible

(A) If volume of the solution remains constant and pressure changes after mixing

Then in this case there won't be any effect on the equilibrium after addition of the inert electrolytes.

(B) If the volume increases and pressure remains constant -

The concentration of the solution decreases on adding the inert electrolytes.

At the equilibrium on adding the inter electrolytes reaction will shift towards the side where there is increase in number of moles of the gases.

Add a comment
Know the answer?
Add Answer to:
How do the addition of inert electrolytes influence the equilibrium constants calculated using concentrations?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)?n where R=0.08206 L?atm/(K?mol), T is the absolute temperature, and ?n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)?2NH3(g) for which ?n=2?(1+3)=?2. Part A For the reaction 3A(g)+3B(g)?C(g) Kc...

  • , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    , The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Part A Kp = K.(RT)An For the reaction 3A(g) + 2B(g) = C(g) where R=0.08206 L.atm/(K·mol), T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. A) For the reaction 3A(g)+3B(g)⇌C(g) Kc =...

  • Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous...

    Part A For the reaction The equilibrium constant, Kc is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp. is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation K = K (RT)An where R=0.08206 L-atın/K mol). T is the absolute temperature, and An is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N (g)...

  • The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. For the reaction 2A(g)+2B(g)⇌C(g) Kc = 80.2...

  • Review Constants Periodic Ta At equilibrium, the concentrations of reactants and products can be predicted using...

    Review Constants Periodic Ta At equilibrium, the concentrations of reactants and products can be predicted using the equilibrium constant, Ke, which is a mathematical expression based on the chemical equation. For example, in the reaction Part A A+B=C+ dD where a, b, c, and d are the stoichiometric coefficients, the equilibrium constant is KID A mixture initially contains A, B and in the following concentrations: A = 0.500 MB] =0.950 M and C -0300 M The following reaction occurs and...

  • 5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of...

    5. The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TT is the absolute temperature, and ΔnΔn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2 For the reaction 3A(g)+2B(g)⇌C(g) KcKc...

  • 1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of...

    1. The equilibrium constant, Kc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, Kp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol), T is the absolute temperature, and Δn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2. Part A For the reaction 3A(g)+2B(g)⇌C(g)...

  • The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, KcKc, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKp, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)ΔnKp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TT is the absolute temperature, and ΔnΔn is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g)N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2Δn=2−(1+3)=−2. A For the reaction 3A(g)+3B(g)⇌C(g)3A(g)+3B(g)⇌C(g) KcKc...

  • The equilibrium constant, KcKcK_c, is calculated using molar concentrations. For gaseous reactions another form of the...

    The equilibrium constant, KcKcK_c, is calculated using molar concentrations. For gaseous reactions another form of the equilibrium constant, KpKpK_p, is calculated from partial pressures instead of concentrations. These two equilibrium constants are related by the equation Kp=Kc(RT)ΔnKp=Kc(RT)Δn where R=0.08206 L⋅atm/(K⋅mol)R=0.08206 L⋅atm/(K⋅mol), TTT is the absolute temperature, and ΔnΔnDelta n is the change in the number of moles of gas (sum moles products - sum moles reactants). For example, consider the reaction N2(g)+3H2(g)⇌2NH3(g)N2(g)+3H2(g)⇌2NH3(g) for which Δn=2−(1+3)=−2Δn=2−(1+3)=−2. A.) For the reaction 3A(g)+3B(g)⇌C(g)3A(g)+3B(g)⇌C(g)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT