Question

marble A (with a mass of 200 grams) hangs from a 0.20-m-long string, and marble B...

marble A (with a mass of 200 grams) hangs from a 0.20-m-long string, and marble B (mass of 400 grams) hangs from a 0.40-m-long string. When set to oscillate starting with a relatively small angular displacement from equilibrium, marble B will make a complete oscillation in

a) less time than marble A, and less than half the time

b) more time than marble A, and exactly twice the time

c) exactly the same time as marble A

d) less time than marble A, but more than half the time

e) more time than marble A, but less than twice the time

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
marble A (with a mass of 200 grams) hangs from a 0.20-m-long string, and marble B...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m hangs from string wrapped around a pulley of radius R. The pulley has...

    A mass m hangs from string wrapped around a pulley of radius R. The pulley has a moment of inertia I and its pivot is frictionless. Because of gravity, the mass falls and the pulley rotates. The magnitude of the torque on the pulley is.. equal to mgR Not enough information greater than mgR less than mgR

  • A mass m hangs from a string. The string is attached to a frictionless pulley of...

    A mass m hangs from a string. The string is attached to a frictionless pulley of mass M and is wrapped around it many times around it. The hanging mass is released from rest from a height h above the floor. The pulley is a uniform disk. use the rotational and linear second laws to find the acceleration of the mass as it falls. I got a = 2mg/(2m+M). Is this correct? If, so please explain

  • A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs...

    A simple pendulum with mass m = 2.3 kg and length L = 2.62 m hangs from the ceiling. It is pulled back to an small angle of θ = 9.2° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs...

    A simple pendulum with mass m = 2.1 kg and length L = 2.79 m hangs from the ceiling. It is pulled back to a small angle of θ = 11.5° from the vertical and released at t = 0. 1) What is the period of oscillation? 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? 3) What is the maximum speed of the pendulum? 4) What is the angular displacement...

  • 2. An unknown mass is attached via string to the axle (radius 0.20 m) of wheel...

    2. An unknown mass is attached via string to the axle (radius 0.20 m) of wheel (radius 0.40 m). The wheel has moment of inertia 0.053 kg m2. When the system is released from rest, the mass accelerates downward at 0.10 m/s. a) What is the mass? b) How fast is the mass moving if it falls 1.0 m? Hint: use kinematics. c) What is the total kinetic energy of the system at that location? 3. Reconsider the previous scenario...

  • A small mass M attached to a string slides in a circle (x) on a frictionless...

    A small mass M attached to a string slides in a circle (x) on a frictionless horizontal table, with the force F providing the necessary tension (see figure). The force is then increased slowly and then maintained constant when M travels around in circle (y). The radius of circle (x) is twice the radius of circle (y). Answer can be true,false,less than, greater than, equal to (if you could leave an explanation that would be great!) M's angular velocity at...

  • A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs...

    A simple pendulum with mass m = 1.8 kg and length L = 2.77 m hangs from the ceiling. It is pulled back to an small angle of θ = 9° from the vertical and released at t = 0. 1) What is the period of oscillation? Answer= 3.34 s 2) What is the magnitude of the force on the pendulum bob perpendicular to the string at t=0? Answer= 2.76 N 3) What is the maximum speed of the pendulum?...

  • An object of mass m 214 g hangs by a light string wrapped around a light...

    An object of mass m 214 g hangs by a light string wrapped around a light inner pulley (hub) having radius R, - 18.7 em. This inner pulley is the hub of a circular wheel having radius R2 = 24.9 cm and mass Mwheel 768 g. Assume the entire wheel assembly rotates without friction and that the inner polley has negligible mass. What is the tangential speed of a point on the rim of the inner pulley at time t...

  • A simple pendulum with mass m = 1.7 kg and length L = 2.47 m hangs...

    A simple pendulum with mass m = 1.7 kg and length L = 2.47 m hangs from the ceiling. It is pulled back to an small angle of = 11.8° from the vertical and released at t = 0. 1) What is the period of oscillation? s Submit Help You currently have 10 submissions for this question. Only 15 submission are allowed. You can make 5 more submissions for this question. Your sih missions: Computed value: 2.9 Submitted: Thursday, November...

  • Problem 1 [8 pts] A uniform string of mass m and length L hangs vertically from...

    Problem 1 [8 pts] A uniform string of mass m and length L hangs vertically from the ceiling. (a) Find the tension in the rope as a function of distance from the lower end, and therefore determine the speed of a wave pulse as a function of position. (b) Solve by integration 2 = v(y) to determine the time it takes a wave pulse to travel the full length of the string.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT