Question

Object A has a mass of 50 kg and is initially moving along the x-axis at...

Object A has a mass of 50 kg and is initially moving along the x-axis at 5.0 m/s. It collides with object B, which has a mass of 22 kg initially at rest. After the collision, object A moves with a velocity of 3.0 m/s in a direction that is 30 degrees above the x-axis. What is the final velocity (magnitude and direction) of object B?  

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Object A has a mass of 50 kg and is initially moving along the x-axis at...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 3.0-kg object moving 8.0 m/s in the positive x direction has a one-dimensional elastic collision...

    A 3.0-kg object moving 8.0 m/s in the positive x direction has a one-dimensional elastic collision with an object (mass = M) initially at rest. After the collision, the object of unknown mass has a velocity of 6.0 m/s in the positive x direction. What is M? a. 6.0 kg b.5.0 kg c. 4.2 kg d. 7.5 kg e. 8.0 kg

  • i) Mass 1 is initially moving in the +x direction and has 20 Joules of kinetic...

    i) Mass 1 is initially moving in the +x direction and has 20 Joules of kinetic energy. It collides perfectly elastically with mass 2 moving at in the -x direction with 14 Joules of kinetic energy. After the collision, mass 2 has 20 Joules of kinetic energy. How much kinetic energy does mass 1 have after the collision in Joules? (Note: the masses are not needed to answer this question.) ii) Mass 1 of 10 kg is initially moving at...

  • Mass 1 of 8 kg is initially moving at 10 m/s in the +x direction and it collides perfectly elastically with mass 2 of 3 kg initially at rest.

    Mass 1 of 8 kg is initially moving at 10 m/s in the +x direction and it collides perfectly elastically with mass 2 of 3 kg initially at rest. What is the final velocity of mass 2 after the collision in m/s? (Note: the masses are not needed to answer this question.) _______ 

  • Block A with a mass of 9.0 kg moves along the x axis with a velocityof...

    Block A with a mass of 9.0 kg moves along the x axis with a velocityof 6.0 m/s(in the positive x direction.) It suffers an ellastic collision with block B (15.0 kg), which initially has a velocity of -2.0 m/s(in the negative x direction). The blocks leave the collision along the x axis. what is the initial kinetic energy of the system? what is the initial momentum of the system? what is the velocity of the blocks after the collision?

  • As shown in the figure, a wooden ball with mass m, is initially at rest on...

    As shown in the figure, a wooden ball with mass m, is initially at rest on a horizontal, frictionless table. A second wooden ball with mass m, moving with a speed 2.00 m/s, collides with my. Assume m, moves initially along the +x-axis. After the collision, m, moves with speed 1.00 m/s at an angle of 0 = 52.0° to the positive x-axis. (Assume me = 0.200 kg and m, = 0.300 kg.) Figure b: After the collision Before the...

  • An object (A) of mass m A = 29.0 kg is moving in a direction that...

    An object (A) of mass m A = 29.0 kg is moving in a direction that makes angle of 40° north of east with a speed v A = 5.10 m/s, while object (B) of mass m B = 17.5 kg is moving due north with a speed v B = 7.85 m/s. The two objects collide and stick together in a completely inelastic collision. Find the magnitude of the final velocity of the two-object system after the collision. An...

  • A 19.5kg object moving in the +x direction at 5.5 m/s collides head on with a...

    A 19.5kg object moving in the +x direction at 5.5 m/s collides head on with a 15.9kg object moving in the -x direction at 3.5m/s. Part A Find the final velocity of each mass if the objects stick together. Part B Find the final velocity of each mass if the collision is elastic. Part C Find the final velocity of each mass if the 19.5 kg object is at rest after the collision. Part D Is the result in part...

  • Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere...

    Sphere A, of mass 0.600 kg, is initially moving to the right at 4.00 m/s. Sphere B, of mass 1.80 kg, is initially to the right of sphere A and moving to the right at 2.00 m/s. After the two spheres collide, sphere B is moving at 3.00 m/s in the same direction as before. (a) What is the velocity (magnitude and direction) of sphere A after this collision? (b) Is this collision elastic or inelastic? (c) Sphere B then...

  • The only force acting on a 2.0 kg object moving along the x axis is shown....

    The only force acting on a 2.0 kg object moving along the x axis is shown. If the velocity vx is -2.0 m/s at t = 0, what is the velocity in m/s at t = 3.0s?a. -2.0b. -4,0c. -3.0d. +1.0e. -5.0

  • An object of mass m, initially moving at 6.44 along the x-axis, explodes into two pieces....

    An object of mass m, initially moving at 6.44 along the x-axis, explodes into two pieces. The first piece, 83.6 percent of the mass, moves along the negative x-axis at 7.63 m/s. Find the speed, in m/s, of the other piece right after the explosion.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT