Question

A block of mass m = 2.4kg is attached to a single spring of spring constant...

A block of mass m = 2.4kg is attached to a single spring of spring constant k = 4.3??Nmand allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is ?=0?x=0m. At time ?=0?t=0s the mass is at position ?=−3.0?x=−3.0m and moving with x-component of velocity ??=4.5??vx=4.5ms. Where is the block at time ?=6.8?t=6.8s? Answer in meters.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass m = 2.4kg is attached to a single spring of spring constant...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m = 2.1 kg is attached to a single spring of spring...

    A block of mass m = 2.1 kg is attached to a single spring of spring constant k = 4.3 and allowed to oscillate on a horizontal, frictionless surface while restricted to move in the x-direction. The equilibrium position of the block is x = 0m. At time t = 0s the mass is at position x =-0.7m and moving with x-component of velocity vx-1.79. what is the x- component of velocity at time t = 5.3s? Answer in meters...

  • A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface.

    A block of mass M is attached to a wall by a massless spring with spring constant k. The block is allowed to oscillate on a frictionless surface. A second block of mass m is placed on top of the first block. The coefficient of static friction between the two blocks is his. What is the angular frequency of oscillation, and what is the maximum possible amplitude of oscillation such that the second block will not fly off?

  • A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg...

    A spring of spring constant k=261 N/m is attached to a block of mass 1.38 kg and stretched horizontally to a position 15.0 cm from the springs equilibrium position. The spring and mass are released and oscillate in simple harmonic motion across a frictionless horizontal surface. What is the maximum speed obtained by the mass? m/s

  • Please help 8. An object of mass m-2Kg is attached to a horizontal spring of constant...

    Please help 8. An object of mass m-2Kg is attached to a horizontal spring of constant k-30 N/m and can move frictionless along a horizontal table. The other end of the spring is attached to a wall The spring is relaxed and the block is at rest. Then the block is pushed 3 cm to the left and released from rest. Considering positive x direction to the right, and t-0 the time of release, write the position equation as a...

  • 1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface....

    1. A block of mass 6.00kg is connected to a spring on a horizontal frictionless surface. The spring constant is 280N/m. The block-spring system undergoes simple harmonic motion. At a time t=0s, the position of the block x= +A and its velocity vx= 0. At t=2.50s the position x = -12.0 cm No credit awarded without correct units! a. Determine the angular frequency and period of the motion b. Determine the amplitude c. Determine the phase angle d. Write the...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m.

    A block of mass m = 4.5 kg is attached to a spring with spring constant k = 710 N/m. It is initially at rest on an inclined plane that is at an angle of θ = 25° with respect to the horizontal, and the coefficient of kinetic friction between the block and the plane is μk=0.18. In the initial position, where the spring is compressed by a distance of d = 0.12 m, the mass is at its lowest...

  • Q3-(25 pts) A block of mass m is attached to an ideal spring with rest (equilibrium)...

    Q3-(25 pts) A block of mass m is attached to an ideal spring with rest (equilibrium) length L and spring constant k on the x axis. m other end of the spring is fixed to a wall Initially, the spring is compressed by an amount L/2 and another block of mass 2m is placed in front of the first block (they are not attached). The system is released at t 0 from rest. Ignore friction and the sizes of the...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block of mass m = 6.14 kg is attached to a spring with spring constant...

    A block of mass m = 6.14 kg is attached to a spring with spring constant k = 1682 N/m and rests on a frictionless surface. The block is pulled, stretching the spring a distance of 0.135 m, and is held still. The block is then released and moves in simple harmonic motion about the equilibrium position. (Assume that the block is stretched in the positive direction.) (b) Where is the block located 3.24 s after it is released? (Give...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT