Question

The equilibrium constant, K, for a redox reaction is related to the standard potential, E∘, by...

The equilibrium constant, K, for a redox reaction is related to the standard potential, E∘, by the equation

lnK=nFE∘RT

where n is the number of moles of electrons transferred, F (the Faraday constant) is equal to 96,500 C/(mol e−) , R (the gas constant) is equal to 8.314 J/(mol⋅K) , and T is the Kelvin temperature.

Calculate the standard cell potential (E∘) for the reaction

X(s)+Y+(aq)→X+(aq)+Y(s)

if K = 5.51×10−3.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The equilibrium constant, K, for a redox reaction is related to the standard potential, E∘, by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equilibrium constant, K. for a redox reaction is related to the standard potential, E, by...

    The equilibrium constant, K. for a redox reaction is related to the standard potential, E, by the equation Fe(s) + Ni+ (aq) +Fe?+ (aq) + NI(s) FE In K = Express your answer numerically. View Available Hints) where n is the number of moles of electrons transferred, F (the Faraday constant) is equal to 96,500 C/(mole). R (the gas constant) is equal to 8.314 J/(mol-K). and T is the Kelvin temperature. ΟΙ ΑΣΦ h ? KK- Submit Previous Answers *...

  • The equilibrium constant, K, for a redox reaction is related to the standard potential, Eº, by...

    The equilibrium constant, K, for a redox reaction is related to the standard potential, Eº, by the equation In K = nFE° RT where n is the number of moles of electrons transferred, F (the Faraday constant) is equal to 96,500 C/(mol e), R (the gas constant) is equal to 8.314 J/(mol · K), and T is the Kelvin temperature. Standard reduction potentials Reduction half-reaction E° (V) Ag+ (aq) + e +Ag(s) 0.80 Cu²+ (aq) + 2e + Cu(s) 0.34...

  • Review I Constants I Periodic Table The equilibrium constant, K, for a redox reaction is related...

    Review I Constants I Periodic Table The equilibrium constant, K, for a redox reaction is related to the standard potential, E°, by the equation Standard reduction potentials nFE RT In K E° (V) Reduction half-reaction Agt(aq)eAg(s) Cu2+(aq)2eCu(s) 0.80 where n is the number of moles of electrons transferred, F (the Faraday constant) is equal to 96,500 C/(mol e), R (the gas constant) is equal to 8.314 J/(mol - K) , and T is the Kelvin temperature. 0.34 Sn4t (aq)4eSn(s) 0.15...

  • Cell Potential and Equilibrium Standard reduction potentials The equilibrium constant, K, for a redox reaction is...

    Cell Potential and Equilibrium Standard reduction potentials The equilibrium constant, K, for a redox reaction is related to the standard cell potential, Ecel, by the equation Reduction half-reaction (V) Ag+ (aq) + e-→Ag(s) Cu2+ (aq) + 2e-→Cu(s) 0.34 Sn (a) 4e-Sn(s 0.15 2H' (aq) + 2e-→H2 (g) Ni2+ (aq) + 2e-→Ni(s)-0.26 Fe2+ (aq) + 2e-→Fe(s)-0.45 Zn2+ (aq) + 2e-→Zn(s)-0.76 Al3+ (aq) +3e-→Al(s) -1.66 Mg2+ (aq) + 2e-→Mg(s) -2.37 0.80 n FEcell where n is the number of moles of electrons...

  • Free-energy change, ΔG∘, is related to cell potential, E∘, by the equation ΔG∘=−nFE∘ where n is...

    Free-energy change, ΔG∘, is related to cell potential, E∘, by the equation ΔG∘=−nFE∘ where n is the number of moles of electrons transferred and F=96,500C/(mol e−) is the Faraday constant. When E∘ is measured in volts, ΔG∘ must be in joules since 1 J=1 C⋅V. Calculate the standard cell potential at 25 ∘C for the reaction X(s)+2Y+(aq)→X2+(aq)+2Y(s) where ΔH∘ = -679 kJ and ΔS∘ = -195 J/K .

  • Free-energy change, AGº, is related to cell potential, Eº, by the equation AG° = -nFE° where...

    Free-energy change, AGº, is related to cell potential, Eº, by the equation AG° = -nFE° where n is the number of moles of electrons transferred and F = 96,500 C/(mol e ) is the Faraday constant. When Eº is measured in volts, AGⓇ must be in joules since 1 J =1C.V. Part A Calculate the standard free-energy change at 25°C for the following reaction: Mg(s) + Fe2+ (aq)Mg2+ (aq) + Fe(s) Express your answer to three significant figures and include...

  • The cell potential of a redox reaction occurring in an electrochemical cell under any set of...

    The cell potential of a redox reaction occurring in an electrochemical cell under any set of temperature and concentration conditions can be determined from the standard cell potential of the cell using the Nernst equation where E is the cell potential of the cell, E° is the standard cell potential of the cell, R is the gas constant, T is the temperature in kelvin, n is the moles of electrons transferred in the reaction, and Q is the reaction quotient....

  • part B pleased The equiibrium constant, K, for a redox reaction is read to the standard...

    part B pleased The equiibrium constant, K, for a redox reaction is read to the standard potential, B", by the equation Standard reduction potentials luk- Wheren is the number of moles of electrone transferred, F (the Faraday constant) is equal 10 28.500 c c ), the gas is equal to 8 314/walk) and is the Kamin emperature Reduction halt-reaction ( AB + + ) 0.80 c )+2 ) 0.34 397) Sula) 0.15 2H ) +202 ) D Ni+) Nia) -0.26...

  • <Hw7B-Chapter20 Introduction to the Nernst Equation 8 of 17 Review Constants | Periodic Table Consider the reaction Mgl(s) I Fe2 (aq) Mg2+(aq) I Fe(s) Learning Goal: To learn how to use the Nemst equation. at 43°C, where Fe2+ ] _ 2.90 M and Mg21-0.310 M The standard reduction potentials listed in any reference table are only valid at standard-state conditions of 25 C and 1 M. To calculate the cell potential at non-standard-state conditions, one uses the Nernst equation. Part...

  • KAssignment 18 (Chapter 18) Introduction to the Nernst Equation 1 of 3 Review I Constants Periodic...

    KAssignment 18 (Chapter 18) Introduction to the Nernst Equation 1 of 3 Review I Constants Periodic Table Learning Goal: To learn how to use the Nemst equation. Consider the reaction The standard reduction potentials listed in any reference table are only valid at standard-state conditions of 25 C and 1 M, To calculate the cell potential at non-standard-state conditions, one uses the Nemst equation, Mg(s) Fe2 (aq)Mg2 (aq)Fe(s) at 43C, where Fe213.70 M and Mg2 0.310 M 2.303 RT 10g10...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT