Question

18. A block of mass mb rests on a horizontal surface and is accelerated by means...

18. A block of mass mb rests on a horizontal surface and is accelerated by means of a horizontal cord that passes over a frictionless peg to a hanging weight of mass mw. The coefficient of kinetic friction between the block and the horizontal surface is µ and the tension in the cord is T. The acceleration of the block is given by A. (T – mwg)/(mw + mb). B. T/(µmbg + mb). C. (T – µmb)/mb. D. (mwg – T)/mw. E. T/mb – µmbg.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
18. A block of mass mb rests on a horizontal surface and is accelerated by means...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 17.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.25. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? ____ m/s2 (b) Determine the magnitude of...

  • A block of mass m1 = 36 kg on a horizontal surface is connected to a...

    A block of mass m1 = 36 kg on a horizontal surface is connected to a mass m2 = 23.0 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.30. (Assume gravity acts toward the +ydirection and the +x-axis is parallel to the surface and to the right.) (a) What is...

  • A block of mass m2 = 38 kg on a horizontal surface is connected to a...

    A block of mass m2 = 38 kg on a horizontal surface is connected to a mass m2 = 20.1 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m, and the horizontal surface is 0.24. m (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? 3.39 Did you draw a free-body...

  • A block A with a mass of 3 kg rests on a horizontal table top. The...

    A block A with a mass of 3 kg rests on a horizontal table top. The coefficient of kinetic friction, μk = 0.5. A horizontal string is attached to A and passes over a massless, frictionless pulley, and block B with mass 2 kg hangs from it. Because of the pull of gravity, the masses accelerate. What is the Tension in the string (in Newtons)?

  • A block of mass m2 on a rough, horizontal surface is connected to a ball of...

    A block of mass m2 on a rough, horizontal surface is connected to a ball of mass m1 by a lightweight cord over a lightweight, frictionless pulley as shown in the figure. A force of magnitude F at an angle ?θ with the horizontal is applied to the block as shown, and the block slides to the right. The coefficient of kinetic friction between the block and surface is ??μk. Determine the magnitude of the acceleration of the two objects.

  • 27 only (26) A block of mass mi located on a horizontal frictionless surface is connected...

    27 only (26) A block of mass mi located on a horizontal frictionless surface is connected by a light non-stretchable cord that passes over a massless frictionless pulley to a second block of mass m2, which is allowed to move on an inclined friction- less plane of angle e, as shown in Fig. 5.37. Find the acceleration of the two blocks and the tension in the cord when mı = 2 kg, m2 =6 kg, sin 0 =4/5, and cos...

  • A block of mass m1 = 39 kg on a horizontalsurface is connected to a...

    A block of mass m1 = 39 kg on a horizontal surface is connected to a mass m2 = 22.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction betweenm1 and the horizontal surface is 0.23.A) What is the magnitude of the acceleration (in m/s2) of the hanging mass?B) Determine the magnitude of the tension (in N) in...

  • Please help, I dont understand this... A block of mass m1 = 34 kg on a...

    Please help, I dont understand this... A block of mass m1 = 34 kg on a horizontal surface is connected to a mass m2 = 16.5 kg that hangs vertically as shown in the figure below. The two blocks are connected by a string of negligible mass passing over a frictionless pulley. The coefficient of kinetic friction between m1 and the horizontal surface is 0.23. (a) What is the magnitude of the acceleration (in m/s2) of the hanging mass? (b)...

  • A textbook of mass 1.92 kg rests on a frictionless, horizontal surface. A cord attached to...

    A textbook of mass 1.92 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.150 m , to a hanging book with mass 2.94 kg . The system is released from rest, and the books are observed to move a distance 1.29 m over a time interval of 0.780 s Part A What is the tension in the part of the cord attached to the textbook? Part B What...

  • Block A in the figure has mass mA = 4.20 kg, and block B has mass...

    Block A in the figure has mass mA = 4.20 kg, and block B has mass mB = 2.40 kg. The coefficient of kinetic friction between block B and the horizontal plane is μk = 0.520. The inclined plane is frictionless and at angle θ = 34.0°. The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT