Question

The reaction, aA  products, is a first order reaction with a rate constant of 1.248...

The reaction, aA  products, is a first order reaction with a rate constant of 1.248 x 10-4 s-1 .

a. How long (in seconds) does it take for the initial amount of A to decrease by 30%?

b. What fraction of reactant remains after 30 minutes?

c. What is the half-life for the reaction?

d. How long does it take for the initial amount of reactant to decrease by 87.5%?

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
The reaction, aA  products, is a first order reaction with a rate constant of 1.248...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 1. A certain first order reaction has a rate constant of 0.036 min-1. How much of the reactant will remain if the reacti...

    1. A certain first order reaction has a rate constant of 0.036 min-1. How much of the reactant will remain if the reaction is run for 2.5 hours and the initial concentration of the reactant is 0.31 M? 2. A certain first order reaction has a rate constant of 0.036 min-1. How much of the reactant will remain if the reaction is run for 2.5 hours and the initial concentration of the reactant is 0.31 M? 3. The rate constant...

  • A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at...

    A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at 45 °C How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? at 27 °C A certain second-order reaction (B-products) has a rate constant of 1.05x10-3 M 1.s and an initial half-life of 266 s What is the concentration of the reactant B after one half-life?

  • Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45...

    Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B. A certain second-order reaction (B→products) has a rate constant of 1.90×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 298 s . What is the concentration of the reactant B after one half-life?

  • A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C....

    A certain first-order reaction ( A products) has a rate constant of 5.10x10-35-1 at 45 °C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Express your answer with the appropriate units. View Available Hint(s) ? HA Value O Units Submit Part B A certain second-order reaction (B>products) has a rate constant of 1.10x10-3M-1.s-1 at 27°C and an initial half-life of 212 s . What is the concentration...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as 0.693 - 1/2K For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as 1/2 k(Alo Part A A certain first-order reaction (A>products) has a rate constant of 9.60x10 s-1 at45 C. How many minutes does it take for the concentration of the...

  • + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction,...

    + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction, t1/2, is the time it takes for the reactant concentration A to decrease by half. For example, after one half-Me the concentration falls from the initial concentration (Alo to A\o/2, after a second half-life to Alo/4 after a third half-life to A./8, and so on. on Review Constants Periodic Table 11/25 For a second-order reaction, the half-life depends on the rate constant and the...

  • 2. Answer the following questions by connecting the half-life of each first-order reaction to the rate...

    2. Answer the following questions by connecting the half-life of each first-order reaction to the rate constant. a. The rate constant of a first-order reaction is 2.43 × 10–2 min–1. What is the half-life of the reaction? (2 points) b. A first-order reaction has a rate constant of 0.547 min-1. How long will it take a reactant concentration 0.14 M to decrease to 0.07 M? (2 points) c. The half-life of a first-order reaction is 5.47 min. What is the...

  • 6. The first-order decomposition of H:O2 at -30 °C occurs with a rate constant of 0.0165...

    6. The first-order decomposition of H:O2 at -30 °C occurs with a rate constant of 0.0165 s. If we start the reaction with10.0 mol/L H:0 1) What is the rate half-life, ty2 of the reaction? 2) What will be the residual concentration of H O, after 5 minutes? 3) What will be the initial reaction rate and the reaction rate at 5 minute? 4) How long will it take for the concentration of H 02 to decrease to 2.5mo/L?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT