Question

When 8.59 g of an unknown, non-volatile, non-electrolyte, X was dissolved in 100. g of benzene,...

When 8.59 g of an unknown, non-volatile, non-electrolyte, X was dissolved in 100. g of benzene, the vapor pressure of the solvent decreased from 100 torr to 97.5 torr at 299 K. Calculate the molar mass of the solute, X.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
When 8.59 g of an unknown, non-volatile, non-electrolyte, X was dissolved in 100. g of benzene,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • When 9.31 g of an unknown non-electrolyte is dissolved in 50.0 g of benzene, the boiling...

    When 9.31 g of an unknown non-electrolyte is dissolved in 50.0 g of benzene, the boiling point increased by 3.16 degrees C. If the Kbp of the solvent is 2.53 K/m, calculate the molar mass of the unknown solute. The answer is 149 ± 2% looking for explanation how to work this problem

  • 1a: 19.930 g of a non-volatile solute is dissolved in 395.0 g of water.   The solute...

    1a: 19.930 g of a non-volatile solute is dissolved in 395.0 g of water.   The solute does not react with water nor dissociate in solution.   Assume that the resulting solution displays ideal Raoult's law behaviour.   At 90°C the vapour pressure of the solution is 521.11 torr.   The vapour pressure of pure water at 90°C is 525.80 torr.   Calculate the molar mass of the solute (g/mol). 1b: Now suppose, instead, that 19.930 g of a volatile solute is dissolved in 395.0...

  • 19.193 g of a non-volatile solute is dissolved in 180.0 g of water. The solute does...

    19.193 g of a non-volatile solute is dissolved in 180.0 g of water. The solute does not react with water nor dissociate in solution. Assume that the resulting solution displays ideal Raoult's law behaviour. At 20°C the vapour pressure of the solution is 17.242 torr. The vapour pressure of pure water at 20°C is 17.535 torr. Calculate the molar mass of the solute (g/mol). Now suppose, instead, that 19.193 g of a volatile solute is dissolved in 180.0 g of...

  • Vapour Pressure of Solutions of Non-Volatile or Volatile Solutes 31.686 g of a non-volatile solute is...

    Vapour Pressure of Solutions of Non-Volatile or Volatile Solutes 31.686 g of a non-volatile solute is dissolved in 460.0 g of water. The solute does not react with water nor dissociate in solution. Assume that the resulting solution displays ideal Raoult's law behaviour. At 10°C the vapour pressure of the solution is 9.055 torr. The vapour pressure of pure water at 10°C is 9.209 torr. Calculate the molar mass of the solute (g/mol). See example 17.1 on pp865-6 of Zumdahl...

  • 1f. At an unknown temperature a solution made of (7.740x10^0) g of a non-volatile solute dissolved...

    1f. At an unknown temperature a solution made of (7.740x10^0) g of a non-volatile solute dissolved in 100.0 g of water has a vapor pressure of (5.51x10^1) mm Hg. What is the vapor pressure of pure water (in mm Hg) at this unknown temperature? The molar mass of the solute is (5.360x10^1) g/mol. 1g. A solution is made of two volatile solutes: Chemical A (with a pure vapor pressure of 80.0 mm Hg) and Chemical B (with a pure vapor...

  • when 4.90 g of a non electrolyte solute is dissolved in water to make 505ml of...

    when 4.90 g of a non electrolyte solute is dissolved in water to make 505ml of solution at 24 C, the solution exerts an osmotic pressure of 803 torr. what is the molar concentration of the solution? How many moles of solute are in the solution? What is the molar mass of the solute?

  • At an unknown temperature a solution made of (5.180x10^0) g of a non-volatile solute dissolved in...

    At an unknown temperature a solution made of (5.180x10^0) g of a non-volatile solute dissolved in 100.0 g of water has a vapor pressure of (5.54x10^1) mm Hg. What is the vapor pressure of pure water (in mm Hg) at this unknown temperature? The molar mass of the solute is (4.620x10^1) g/mol. Enter your answer in scientific notation with 3 sig figs. Do not include any units in your answer. Do not round any intermediate calculations. Note: Your answer is...

  • 17.298 g of a non-volatile solute is dissolved in 265.0 g of water. The solute does...

    17.298 g of a non-volatile solute is dissolved in 265.0 g of water. The solute does not react with water nor dissociate in solution. Assume that the resulting solution displays ideal Raoult's law behaviour. At 90°C the vapour pressure of the solution is 519.57 torr. The vapour pressure of pure water at 90°C is 525.80 torr. Calculate the molar mass of the solute (g/mol).

  • benzene at a certain temperature is 0.850bar. A non- ute solid weighing 0.5 g when added...

    benzene at a certain temperature is 0.850bar. A non- ute solid weighing 0.5 g when added to 39.0 g of benzene 1.). Vapor pressure of the solution, then, is 0.845 bar. 4. The vapor pressure of pure benzene at a volatile, non-electrolyte solid weigh (molar mass 78 g mol-1). Vapor press (0) What is the molar mass of the solid substan 39g + 5g= 39.5 g pwm = ,ASU bar

  • 3a. Calculate the molar mass (in g/mol) of an unknown 1:1 electrolyte if 0.482 g dissolved...

    3a. Calculate the molar mass (in g/mol) of an unknown 1:1 electrolyte if 0.482 g dissolved in 223.1 mL of water at 74.75 °C has an osmotic pressure of 54.4 mmHg. R = 0.082058 L⋅atm⋅mol−1⋅K−1. 1.00 atm = 760 mmHg. Report your answer to THREE significant figures. 3b. Calculate the required mass of an unknown nonelectrolyte (ℳ = 131.5599 g/mol) dissolved in 140.1 g of solvent that gives a solution that boils at 36.04 °C. The boiling point of the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT