Question

Under constant conditions, the half-life of a first-order reaction ________ Select one: A. All of the...

Under constant conditions, the half-life of a first-order reaction ________

Select one:

A. All of the options are correct

B. is constant

C. does not depend on the initial reactant concentration

D. can be calculated from the reaction rate constant

E. is the time necessary for the reactant concentration to drop to half its original value

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Under constant conditions, the half-life of a first-order reaction ________ Select one: A. All of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as 0.693 - 1/2K For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as 1/2 k(Alo Part A A certain first-order reaction (A>products) has a rate constant of 9.60x10 s-1 at45 C. How many minutes does it take for the concentration of the...

  • + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction,...

    + Half-life for First and Second Order Reactions 11 of 11 The half-life of a reaction, t1/2, is the time it takes for the reactant concentration A to decrease by half. For example, after one half-Me the concentration falls from the initial concentration (Alo to A\o/2, after a second half-life to Alo/4 after a third half-life to A./8, and so on. on Review Constants Periodic Table 11/25 For a second-order reaction, the half-life depends on the rate constant and the...

  • Which of the following statements correctly describe the half-life of a reaction? Select all that apply....

    Which of the following statements correctly describe the half-life of a reaction? Select all that apply. Check all that apply. The half-life of a first-order reaction is independent of the initial concentration. The half-life of a reaction is related to its rate constant. The half-life of a reaction is the time taken for (A)to drop to half its original value. A chemical reaction is complete after two half-lives have passed. The half-life of a reaction is always a constant value.

  • Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k...

    Half-life equation for first-order reactions: t1/2=0.693k   where t1/2 is the half-life in seconds (s), and k is the rate constant in inverse seconds (s−1). a) What is the half-life of a first-order reaction with a rate constant of 4.80×10−4  s−1? b) What is the rate constant of a first-order reaction that takes 188 seconds for the reactant concentration to drop to half of its initial value? Express your answer with the appropriate units. c)A certain first-order reaction has a rate constant...

  • A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at...

    A certain first-order reaction (A products) has a rate constant of 5.40 10-3 s I at 45 °C How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? at 27 °C A certain second-order reaction (B-products) has a rate constant of 1.05x10-3 M 1.s and an initial half-life of 266 s What is the concentration of the reactant B after one half-life?

  • The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A]...

    The half-life of a reaction, t1/2, is the time it takes for the reactant concentration [A] to decrease by half. For example, after one half-life the concentration falls from the initial concentration [A]0 to [A]0/2, after a second half-life to [A]0/4, after a third half-life to [A]0/8, and so on. on. For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t1/2=0.693k For a...

  • 2. Answer the following questions by connecting the half-life of each first-order reaction to the rate...

    2. Answer the following questions by connecting the half-life of each first-order reaction to the rate constant. a. The rate constant of a first-order reaction is 2.43 × 10–2 min–1. What is the half-life of the reaction? (2 points) b. A first-order reaction has a rate constant of 0.547 min-1. How long will it take a reactant concentration 0.14 M to decrease to 0.07 M? (2 points) c. The half-life of a first-order reaction is 5.47 min. What is the...

  • Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45...

    Part A. A certain first-order reaction (A→products) has a rate constant of 3.90×10−3 s−1 at 45 ∘C. How many minutes does it take for the concentration of the reactant, [A], to drop to 6.25% of the original concentration? Part B. A certain second-order reaction (B→products) has a rate constant of 1.90×10−3 M−1⋅s−1 at 27 ∘C and an initial half-life of 298 s . What is the concentration of the reactant B after one half-life?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT