Question

The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C....

The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C.

(a) Starting with [A]0 = 9.30 × 10−3 M, how long will it take for [A]t = 2.70 × 10−3 M?

(b) Calculate the half-life of the reaction.

Answer in Minutes

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The reaction 2A → B is second order with a rate constant of 51.0/M · min...

    The reaction 2A → B is second order with a rate constant of 51.0/M · min at 24 ° C. (a) Starting with [A]0 = 9.30 ×10−3M, how long will it take for [A]t = 2.80 ×10−3M?   min (b) Calculate the half-life of the reaction. min

  • 9. The reaction 2A → B is second order with a rate constant of 51.0/M·min at...

    9. The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C. (a) Starting with [A]0 = 9.50 × 10−3M, how long will it take for [A]t = 3.10 × 10−3M? ______ min (b) Calculate the half-life of the reaction. _______ min 10. The thermal decomposition of phosphine (PH3) into phosphorus and molecular hydrogen is a first-order reaction: 4PH3(g) → P4(g) + 6H2(g) The half-life of the reaction is 35.0 s at 680°C. a) Calculate...

  • Be sure to answer all parts. The reaction 2A B is second order with a rate...

    Be sure to answer all parts. The reaction 2A B is second order with a rate constant of 51.0/M-min at 24°C. (a) Starting with [Alo 8.90 x 10 M, how long will it take for [A],3.30 x 103 M? min (b) Calculate the half-life of the reaction. min

  • 8. Consider the reaction: A → B The rate of the reaction is 1.6 × 10−2 M/s when the concentration of A is 0.35 M. Calcul...

    8. Consider the reaction: A → B The rate of the reaction is 1.6 × 10−2 M/s when the concentration of A is 0.35 M. Calculate the rate constant if the reaction is first order in A. Enter only the numerical value for the rate constant in the answer box. 9. The reaction 2A → B is second order with a rate constant of 51.0/M·min at 24°C. (a) Starting with [A]0 = 9.50 × 10−3M, how long will it take...

  • Be sure to answer all parts. The reaction 2A rightarrow B is second order in A...

    Be sure to answer all parts. The reaction 2A rightarrow B is second order in A with a rate constant of 32.1 M^-1 s^-1 at 25 degree C. Starting with [A]0 = 0.00779 M, how long will it take for the concentration of A to drop to 0.001803M? s Calculate the half-life of the reaction for [A]_0 = 0.00779 M. s Calculate the half-life of the reaction for [A)0 = 0.00269 M.

  • 3 attempts left Check my work Be sure to answer all parts. The reaction 2A +...

    3 attempts left Check my work Be sure to answer all parts. The reaction 2A + B is second order with a rate constant of 51.0/M min at 24°C. (a) Starting with (Alo = 8.90 X 10 M, how long will it take for (AJ, = 3.50 x 10-M? min (b) Calculate the half-life of the reaction. min

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k k and not on the reactant concentration. It is expressed as t1/2=0.693k t 1 / 2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t1/2=1k[A]0. A certain first-order reaction (A→products A → p r o d u c t s ) has a rate constant of 9.30×10−3...

  • For the following first order reaction, the half-life is 28.3 and the [A]0 = 1.36. Calculate the rate constant.

    A.For the following first order reaction, the half-life is 28.3 and the [A]0  = 1.36. Calculate the rate constant.2A -> 3BB.Consider the following reaction. aA + bB -> cCwhose first and second half-lives are 38.2 and 19.1 minutes respectively. If the rate constant is equal to 0.2148 and [A]0 = 16.41, calculate the [A] at t 5.87 minutes.C.A researcher raises the temperature from 46.4 to 66 °C and finds that the rate of the reaction doubles. What was the activation energy (in...

  • 3. A reaction 2A 2B + C is known to follow second-order kinetics, with k =...

    3. A reaction 2A 2B + C is known to follow second-order kinetics, with k = 7.20x10*M's' at 25.0 °C. (20 points) During one experiment, the initial concentration of A is [A]. = 0.120 M (a) Calculate the half-life (1,2), in hours, for this experiment. (b) Calculate the initial reaction rate (in M/s) for this reaction (4 points) (c) How long will it take (in hours) for the concentration of C to reach [C] = 0.0540 M (6 points) (d)...

  • For a first-order reaction, the half-life is constant. It depends only on the rate constant k...

    For a first-order reaction, the half-life is constant. It depends only on the rate constant k and not on the reactant concentration. It is expressed as t 1/2 = 0.693 k For a second-order reaction, the half-life depends on the rate constant and the concentration of the reactant and so is expressed as t 1/2 = 1 k[A ] 0 Part A A certain first-order reaction ( A→products ) has a rate constant of 9.90×10−3 s −1 at 45 ∘...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT