Question

A box weighing 200 N is dragged up an incline 10 m long and 3 m...

A box weighing 200 N is dragged up an incline 10 m long and 3 m high. Afterwards is left at rest. The average force (parallel to the incline) is 120 N. a) How much work is done? b) What is the change in the potential energy of the box? In its kinetic energy? c) What is the frictional force on the.box?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A box weighing 200 N is dragged up an incline 10 m long and 3 m...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 200 N box is pushed at a constant velocity up an incline that is 5.00...

    A 200 N box is pushed at a constant velocity up an incline that is 5.00 m long and rises 1.00 m. The incline has a coefficient of kinetic friction of 0.200, and the pushing force is parallel to the incline. The work done by the pushing force is Multiple Choice 475 J. 422 J. 356 J. 300 J. 396 J.

  • A 2.3 kg box, starting from rest, is pushed up a ramp by a 10 N...

    A 2.3 kg box, starting from rest, is pushed up a ramp by a 10 N force parallel to the ramp. The ramp is 2.0 m long and tilted at 17 degrees. The speed of the box at the top of the ramp is 0.80 m/s. (Consider the system to be the box + ramp + earth.) A.) What is the equation for conservation of energy for the system? B.) How much work W does the force do on the...

  • 10. In the figure below, a box slides down an incline. As the box moves from...

    10. In the figure below, a box slides down an incline. As the box moves from point A to point B, which are 5.0 m apart, an applied force acts on the box. The force has a magnitude of 2.0 N and is directed down the incline. The magnitude of the frictional force acting on the box is 10 N. If the kinetic energy of the box increased by 35 J between A and B, how much work is done...

  • What force must be applied to push a carton weighing 240 N up a 19° incline,...

    What force must be applied to push a carton weighing 240 N up a 19° incline, if the coefficient of kinetic friction is 0.35? Assume the force is applied parallel to the incline and the velocity is constant. (What is the magnitude of the force)

  • Q3- A 3kg box slides down 1m long incline as in the figure. The box starts...

    Q3- A 3kg box slides down 1m long incline as in the figure. The box starts from rest at the top, experiences a constant frictional force of 5N. Use energy method to determine the speed at the bottom of the incline? d1.00 m 0.500 m Q4- The coefficient of kinetic friction between 3kg block and the surface in the figure is 0.4. The system starts from rest. Use energy principle to find the speed of the 5kg ball when it...

  • A crate of mass 11.0 kg is pulled up a rough incline with an initial speed...

    A crate of mass 11.0 kg is pulled up a rough incline with an initial speed of 1.40 m/s. The pulling force is 90.0 N parallel to the incline, which makes an angle of 19.6° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.90 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate-incline system due to friction. (c)...

  • A crate of mass 9.6 kg is pulled up a rough incline with an initial speed...

    A crate of mass 9.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 102 N parallel to the incline, which makes an angle of 19.9° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.02 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (c)...

  • A crate of mass 10.8 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.8 kg is pulled up a rough incline with an initial speed of 1.48 m/s. The pulling force is 98 N parallel to the incline, which makes an angle of 19.4° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.08 m. (a) How much work is done by the gravitational force on the crate? J (b) Determine the increase in internal energy of the crate–incline system owing to friction....

  • A crate of mass 10.6 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.6 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 106 N parallel to the incline, which makes an angle of 19.4 degree with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.06 m. How much work is done by the gravitational force on the crate? J Determine the increase in internal energy of the crate-incline system owing to friction. J...

  • A crate of mass 10.8 kg is pulled up a rough incline with an initial speed...

    A crate of mass 10.8 kg is pulled up a rough incline with an initial speed of 1.52 m/s. The pulling force is 94 N parallel to the incline, which makes an angle of 20.8° with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 4.94 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crate–incline system owing to friction. (J)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT