Question

A mass (10 kg) slides up an inclined 10 degree surface at 5 m/s with coefficient...

A mass (10 kg) slides up an inclined 10 degree surface at 5 m/s with coefficient of friction uk=0.5. It is connected by a cord over a pulley to a hanging 15 kg mass by a massless stretchfree cord. What is the acceleration of the mass on the incline? Direction of movement is up the incline and to the right.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The mass is on the inclined plane and is moving up the incline with angle .

The hanging mass is

Net force acting on mass m1 along the direction of its motion (up the incline) is

Net force acting on mass m2 along its direction of motion (down) is

Adding above two equations,

Acceleration of mass on the incline is

Add a comment
Know the answer?
Add Answer to:
A mass (10 kg) slides up an inclined 10 degree surface at 5 m/s with coefficient...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a statellite A block of mass 8 kg slides up a 30° inclined plane while a...

    a statellite A block of mass 8 kg slides up a 30° inclined plane while a cord connects it, over a small frictionless pulley, to a second block of mass 6 kg falling vertically. The coefficient of friction on the surface is 0.13. What is the magnitude of the acceleration of the system? b. What is the tension in the cord?

  • A block with mass one 10.0 kg is placed on an inclined plane with slope angle...

    A block with mass one 10.0 kg is placed on an inclined plane with slope angle 20.0 degrees and is connected to a second hanging block that has mass two 14.0 kg by a cord passing over a small, frictionless pulley. The coefficient of kinetic friction between the inclined plane and the block is 0.35. What is the ACCELERATION of the block up the incline?

  • A block of mass = 3.21 kg on a frictionless plane inclined at angle theta =...

    A block of mass = 3.21 kg on a frictionless plane inclined at angle theta = 34.5 degree is connected by a cord over a massless, frictionless pulley to a second block of mass m_2 = 2.35 kg hanging vertically (see the figure), What is the acceleration of the hanging block (choose the positive direction down)? What Is the tension in the cord?

  • mi 13) A block with mass m = 5.00 kg is placed on an inclined plane...

    mi 13) A block with mass m = 5.00 kg is placed on an inclined plane with slope of a = 30.0° and is connected to a hanging block with mass m2 = 3.00 kg by a cord passing over a small, frictionless pulley as shown in the figure to the right. The coefficient of static friction is 0.333, and the coefficient of kinetic friction is 0.150. What is the magnitude and direction of the friction force on block mı?

  • } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00...

    } %60 A block of mass mi-4.70 kg on a frictionless plane inclined at angle θ-35.00 is connected by a cord over a massless, frictionless pulley to a second block of mass m' = 2.60 kg. Calculate : (a) The magnitude of the acceleration of each block (b) The direction of the acceleration of the hanging block (c) The tension in the cord 4, mo (10 marks)

  • Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless...

    Two blocks m1=8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. the block of mass m2 is placed on a rough inclined surface at an angle (theta = 55) Two blocks my = 8.1 kg and mass m2 are connected by a massless cord over a massless pulley as shown below. The block of mass mz is placed on a rough inclined surface at an angle = 55°, and a force...

  • M 3. A mass M, = 13.4 kg is on a horizontal surface. This mass is...

    M 3. A mass M, = 13.4 kg is on a horizontal surface. This mass is connected to a rope which runs over a frictionless massless pulley to a hanging mass M. = 9.56 kg. The coefficient of kinetic friction between M, and the surface is 0.257, and the coefficient of static friction is 0.355. a) Assuming that the masses are moving, find their acceleration b) M. is now changed, and the system is stopped and released. M, remains 13.4...

  • A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.23 kg on a frictionless plane inclined at angle θ = 32.3° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?

  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ...

    A block of mass m1 = 3.28 kg on a frictionless plane inclined at angle θ = 31.8° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.74 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord? Answered (a) which is 1.65 but cant get (b). Its not 27.6.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT