Question

A pendulum is made up of a small sphere of mass 0.500 kg attached to a...

A pendulum is made up of a small sphere of mass 0.500 kg attached to a string of length 0.900 m. The sphere is swinging back and forth between point A, where the string is at the maximum angle of 35.0∘ to the left of vertical, and point C, where the string is at the maximum angle of 35.0∘ to the right of vertical. The string is vertical when the sphere is at point B.

a) Calculate how much work the force of gravity does on the sphere from A to B.

b) Calculate how much work the force of gravity does on the sphere from B to C.

c) Calculate how much work the force of gravity does on the sphere from A to C.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A pendulum is made up of a small sphere of mass 0.500 kg attached to a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Pendulum. A small rock with mass 0.10 kg is fastened to a massless string with length...

    Pendulum. A small rock with mass 0.10 kg is fastened to a massless string with length 0.84 m to form a pendulum. The pendulum is swinging so as to make a maximum angle of 45° with the vertical. Air resistance is negligible (a) What is the speed of the rock when the string passes through the vertical position? m/s (b) What is the tension in the string when it makes an angle of 45° with the vertical? (c) What is...

  • Q2) A simple pendulum consists of a ball of mass 4.0 kg attached to the ceiling...

    Q2) A simple pendulum consists of a ball of mass 4.0 kg attached to the ceiling by a very light wire 3 of length 2.0 m. Att from rest. 0s, the pendulum is displaced to the right by an angle of 8 and released a) What is the period of oscillation? rn b) What is the magnitude of the force on the ball tangential or perpendicular) to the string at t os c) What is the maximum speed of the...

  • Conservation of Energy A simple pendulum consists of an object suspended by a string. The object...

    Conservation of Energy A simple pendulum consists of an object suspended by a string. The object is assumed to be a particle. The string, with its top end fixed, has negligible mass and does not stretch. In the absence of air friction, the system oscillates by swinging back and forth in a vertical plane. If the string is 1.50 m long and makes an initial angle of 34.5° with the vertical, calculate the speed of the particle at the following...

  • Please answer these problems 4. A particle of mass o.500 kg is shot from Pas shown...

    Please answer these problems 4. A particle of mass o.500 kg is shot from Pas shown in Figure P7.6. The particle has an initial velocity with a horizontal component of 30.0 m/s. The particle rises to a maximum height of 20.0 m above P. Using the law of conservation of energy, determine (a) he vertical component of vi, he work done by the gravitational force on the particle during its motion from P to B, and (c) the horizontal and...

  • NEED ASAP A pendulum is made up of a massless rod of length 1.6 m attached...

    NEED ASAP A pendulum is made up of a massless rod of length 1.6 m attached to a 4 kg mass. It’s released from rest when the pendulum is horizontal. When the pendulum is vertical, the mass is moving at 4.8 m/s. a) Taking the gravitational potential energy to be zero at the bottom of the swing, what is the initial total mechanical energy? b) How much energy is lost due to air resistance as the pendulum moves from its...

  • (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as...

    (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0) ~ 0, and with that substitution, the differential equation becomes linear A. Determine the equation of motion of a...

  • Exercise of conservation theorems: the sphere of mass m of the simple pendulum of the figure...

    Exercise of conservation theorems: the sphere of mass m of the simple pendulum of the figure is released from rest when the string makes an angle β1 with the vertical; Based on this information: Determine one expression for velocity and another for tension at the lowest point ②. A pendulum of 61.0 m in length and 0.400 kg of mass is released from rest when the rope is at an angle of 65.0 or vertical. Find the velocity of the...

  • Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from...

    Previous Problem List Next 11 point) Suppose a pendulum with length Limeters) has angle iradians) from the vertical. It can be shown that as a function of time satisfies the differential equation: do sin = 0 de? Z . and with that substitution, the differential where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - equation becomes Inear A. Determine the equation of motion of a pendulum with...

  • show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0...

    show all steps please (1 point) Suppose a pendulum with length L (meters) has angle 0 (radians) from the vertical. It can be shown that 0 as a function of time satisfies the differential equation: d20 +sin0 0 dt2 where g 9.8 m/sec/sec is the acceleration due to gravity. For small values of 0 we can use the approximation sin(0)~0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum with length...

  • (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It...

    (10 points) Suppose a pendulum with length L (meters) has angle (radians) from the vertical. It can be shown that e as a function of time satisfies the differential equation: de 8 + -sin 0 = 0 dt2 L where g = 9.8 m/sec/sec is the acceleration due to gravity. For small values of we can use the approximation sin(0) - 0, and with that substitution, the differential equation becomes linear. A. Determine the equation of motion of a pendulum...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT