Question

Given that the lowest energy state of a particle in this potential has energy E1as shown in the a...

Given that the lowest energy state of a particle in this potential has energy E1as shown in the above diagram. Copy this diagram in your answer book, including the energy level E1, and sketch the lowest energy state wave function. Indicate the classically forbidden region and all important features such as values, functional forms, etc, and give your reason why it should have these features. There is no need to solve this problem exactly.
b) Repeat part a) for the first excited state whose energy is E2 as shown.

media%2Fb4f%2Fb4fa4937-076e-4f35-a82a-2e

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Nol node) Er

Add a comment
Know the answer?
Add Answer to:
Given that the lowest energy state of a particle in this potential has energy E1as shown in the a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the...

    2. Now consider a particle in the ground state of the harmonic oscillator. ok gives the wave function for the ground state, but not the value of the constant A. Determine what it has to be if the ground state is normalized. (b) Suppose a classical particle has an energy equal to the ground state energy E. This particle will, of course, oscillate back and forth as though it were attached to a spring. What would its turning points be?...

  • A NON stationary state A particle of mass m is in an infinite square well potential of width L, a...

    A NON stationary state A particle of mass m is in an infinite square well potential of width L, as in McIntyre's section 5.4. Suppose we have an initial state vector lv(t -0) results from Mclntrye without re-deriving them, and you may use a computer for your math as long as you include your code in your solution A(3E1) 4iE2)). You may use E. (4 pts) Use a computer to plot this probability density at 4 times: t 0, t2...

  • 3.9. A particle of mass m is confined in the potential well 0 0<x < L...

    3.9. A particle of mass m is confined in the potential well 0 0<x < L oo elsewhere (a) At time t 0, the wave function for the particle is the one given in Problem 3.3. Calculate the probability that a measurement of the energy yields the value En, one of the allowed energies for a particle in the box. What are the numerical values for the probabilities of obtaining the ground-state energy E1 and the first-excited-state energy E2? Note:...

  • 3. A particle is in a 1D box (infinite potential well) of dimension, a, situated symmetrically ab...

    3. A particle is in a 1D box (infinite potential well) of dimension, a, situated symmetrically about the origin of the x-axis. A measurement of energy is made and the particle is found to have the ground state energy: 2ma The walls of the box are expanded instantaneously, doubling the well width symmetrically about the origin, leaving the particle in the same state. a) Sketch the initial potential well making it symmetric about x - 0 (note this is different...

  • QM 30 Relating classical and quantum mechanics IV. Supplement: Highly-excited energy eigenstates A particle is in...

    QM 30 Relating classical and quantum mechanics IV. Supplement: Highly-excited energy eigenstates A particle is in the potential well shown at right A. First, treat this problem from a purely elassical standpoint (assume the particle has enough energy to reach both regions) Give an example of a real physical situation that corresponds to this potential well. 1. region I | region II 2. In which region of the well would the particle have greater kinetic energy? Explain. 3. In which...

  • In class we considered quantum tunneling of a particle of energy Eo through a barrier of...

    In class we considered quantum tunneling of a particle of energy Eo through a barrier of potential Vofor Vo > Eo. Here we focus on two aspects of the problem we ignored in class. In order to simplify we will only consider the initial first half of the barrier as shown below RegionI xS0 Regionx 20 Il There are two cases to consider: Eo< Vo Considered in class E>Vo Not considered in class Here we will focus on the second...

  • Answers can be more than one: VII. (12pts) Consider the following potential energy: region 1: U(X)...

    Answers can be more than one: VII. (12pts) Consider the following potential energy: region 1: U(X) = U. x < 0 region 2: U(X) = 0 0<x</ Uo region 3: U(x) = U. x>L ТЕ where U. >0. We want to consider a particle with energy E such that 0 < E<Uo. There are two possible forms for the wave function that might be used to represent the particle: (x) = 4 sin kyx+ B, coskx v(x) = 4e** +...

  • Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, inciden...

    Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, incident from the left, strikes a potential energy drop-off of depth Vo 0 (2 pts) Using classical physics, consider a particle incident with speed vo. Use conservation of energy to find the speed on the right vf. ALSO, what is the probability that a given particle will "transmit" from the left side to the right side (again, classically)? A. B. (4 pts) This problem is...

  • Question # 1: Find the unit of energy in the energy expression of a free particle...

    Question # 1: Find the unit of energy in the energy expression of a free particle in 1-D box: Question # 2: A proton in a box is in a state n = 5 falls to a state n = 4 and loose energy with a wavelength of 2000 nm, what is the length of the box? (answer: 4 x 10 m) Question # 3: a. Consider an electron confined to move in an atom in one dimension over a...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT