Question

For the helicopter gas turbine find the free turbine power for the following case: Engine mass flow rate 1.5kgs-1 Compressor
1 0
Add a comment Improve this question Transcribed image text
Answer #1

-ftak, a.ti l-Skit ls. e5aS義 .. Yげ # tr d以 ryct idel 叽 2-チ 5 23と

Add a comment
Know the answer?
Add Answer to:
For the helicopter gas turbine find the free turbine power for the following case: Engine mass fl...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions...

    A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions Air inlet temperature of 27 C Compressor exit temperature of 320 C Combustor exit temperature of 1000 C Exhaust gas temperature of 550 C Inlet Pressure of 100 kPa Combustor Pressure of 800 kPa Using the Cold Air Standard Assumptions. Calculate the thermal efficiency of the gas turbine (in percent).

  • A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions...

    A 1500 hp gas turbine is used to power a helicopter shaft. For the following conditions Air inlet temperature of 27 C Compressor exit temperature of 320 C Combustor exit temperature of 1000 C Exhaust gas temperature of 550 C Inlet Pressure of 100 kPa Combustor Pressure of 800 kPa Using the Cold Air Standard Assumptions. Calculate the thermal efficiency of the gas turbine (in percent).

  • Design a small gas turbine engine to produce 150 kW of net power. Use an air-standard...

    Design a small gas turbine engine to produce 150 kW of net power. Use an air-standard analysis (constant gas properties) and assume air enters the compressor at 100kPa and 20°C. The compressor pressure ratio is 8, the maximum cycle temperature is 800°C, and the cold air stream leaves the regenerator 10°C cooler than the hot air stream at the inlet of the regenerator. Assume a compressor isentropic efficiency of 87% and a turbine isentropic efficiency of 93%. Determine the rates...

  • Design a small gas turbine engine to produce 130kW of net power. Use an air-standard analysis...

    Design a small gas turbine engine to produce 130kW of net power. Use an air-standard analysis (const. gas prop.) and assume air enters the compressor at 100kPa and . the compressor pressure ratio is 10, the maximum cycle temperature is , and the cold air stream leaves the regenerator cooler than the hot air stream at the inlet of the regenerator. Assume a compressor isentropic efficiency of 87% and a turbine isentropic efficiency of 95%. Determine the rates of heat...

  • A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters...

    A combined gas turbine-vapor power plant has a net power output of 100 MW. Air enters the compressor of the gas turbine at 100kPa, 300K, and is compressed to 1200kPa. The isentropic efficiency of the compressor is 84%. The conditions at the inlet to the turbine are 1200kPa and 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100kPa. The air then passes through the interconnecting heat exchanger, and is finally...

  • 1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle...

    1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle and a simple Rankine cycle for the water vapor cycle. Atmospheric air enters the compressor at a rate of 88.2 lbm / s, at 14.7 psia and 59 ° F, and the maximum gas cycle temperature is 1,742 ° F. The pressure ratio in the compressor is 7. The isentropic efficiency of both the compressor and the turbine is 80%. Gas exits the heat...

  • Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency...

    Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency of the compressor is 80 percent, and that of the gas is 85 percent.The bottoming cycle is a simple ideal Rankine cycle operating between the pressures limits of 7 MPa and 5 KPa.Steam is heated in a heat exchanger by the exahust gases to a temperature of 5000C.The exhaust...

  • Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit...

    Problem 1 (Marks 3) Smithfield power station in NSW, Australia operates on 4 gas turbines. Each of the gas turbine unit operates on the regenerative Brayton Cycle between the pressure limits of 100 kPa and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by hot combustion gases leaving the turbine. Diesel fuel with heating value of 42,000 kJ/kg is burned in...

  • Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12...

    Problem 1 (15 pts) A gas turbine cycle operates with a compressor pressure ratio of 12 and a mass flow rate of 5.0 kg/s. Air enters the compressor at 1 bar, 290 K. The maximum cycle temperature is 1600 K. For the compressor, the isentropic efficiency is 85%, and for the turbine the isentropic efficiency is 90%. Using an air-standard analysis with air as ideal gas with constant specific heats, calculate: a) the volumetric flow rate of air entering the...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT