Question

Problem: Determine the field from the potential and show that the result agrees with what you obtained in problem 3 once the change in the variable names is taken into account.

Answer for problem 3:

The assumption made here is for θ =-, it is possible only when is very large, that is infinity. Hence, it is proved that the


The assumption made here is for θ =-, it is possible only when is very large, that is infinity. Hence, it is proved that the expression for the electric filed, E at any point P due to infinitely long conducting wire is, |E=r-P 2
0 0
Add a comment Improve this question Transcribed image text
Answer #1

2. 2 VCb) The potenhal v at dislance b cante found out by standasd esuuit -C (a)i →standard equator) we have ATT2o vob)允 we have 、いかい 0 2 (d ) 92 12. 252 요2 412o 「 b? tain tos tnhnfety labge ca) can be costte nTo poove paoblem 3 aonseter poteshal ot any point lo %a ть Sa prose Vbso tue have. stardlard equahon 8 0 SL rave pooved the r

Add a comment
Know the answer?
Add Answer to:
Problem: Determine the field from the potential and show that the result agrees with what you obt...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Please Help with all of Number 7. 6. You are in a region of space where...

    Please Help with all of Number 7. 6. You are in a region of space where the electric potential is given by: V(x, y,z) Voxy In(z) ( for all points where z>0 (above the x-y plane) ) Find an expression for the electric field E(x, y,z). State this vectorially. 7. In physical wires that carry current, the majority of the current will actually travel very close to the the outer edge of the wire (in the same way that static...

  • Electric potential for a continuous charge distribution: Let's consider a line of charge, of length L...

    Electric potential for a continuous charge distribution: Let's consider a line of charge, of length L having a uniform charge density lambda = 10^-6 C/m and length L=10 cm. Find the electric potential at point P, which is at a distance Z=5 cm. above the midpoint of the line. where In is the natural logarithm. Consider two charged conducting spheres, radii r1 and r2, with charges q1 and q2, respectively. The spheres are far away from each other but connected...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

  • Question 1 (compulsory): (i) State Gauss' law for the electric field (E-field) in words and explain its meaning. Write the corresponding mathematical expression and clearly define all symbols...

    Question 1 (compulsory): (i) State Gauss' law for the electric field (E-field) in words and explain its meaning. Write the corresponding mathematical expression and clearly define all symbols and operations used. Describe one application of Gauss' law. 15% (ii) A very long wire carrying electric charge with uniform line charge density is located in free space. Applying Gauss' law, derive the E-field due to this wire. Clearly explain every step of your derivation and the assumptions you take. 40% Find...

  • 1.4.2 Electric field of a uniformly charged hoop Our goal here will be to find the...

    1.4.2 Electric field of a uniformly charged hoop Our goal here will be to find the electric field of a uniformly charged (thin) hoop. Our hoop has a charge Q uniformly distributed over a hoop with radius R, and is oriented perpendicular to the plane of the paper. We are interested in finding the electric field at the point P, a distance r away from the center of the hoop. See the figure below. do In your answers below, you...

  • sics for Scientists and Engineers 4th ed (1.pdi-Adobe Acrolst Reader Dc Window Help ools Giancoli Physics...

    sics for Scientists and Engineers 4th ed (1.pdi-Adobe Acrolst Reader Dc Window Help ools Giancoli Physics fo... x 93 1322 111% EXAMPLE 21-11 Long line of charge. Determine the magnitude of the electric field at any point P a distance x from the midpoint 0 of a very long line (a wire, say) of uniformly distributed positive charge, Fig. 21-29. Assume x is much smaller than the length of the wire, and let λ be the charge per unit length...

  • Problem 2: a conducting sphere A conducting sphere has a positive net charge Q and radius...

    Problem 2: a conducting sphere A conducting sphere has a positive net charge Q and radius R. (Note: since the sphere is conducting all the charge is distributed on its surface.) a) By reflecting on the symmetry of the charge distribution of the system, determine what the E-field lines look like outside the sphere for any r > R. Describe the E-field in words and with a simple sketch. Make sure to also show the direction of the E-field lines....

  • I only need help with questions 4,5,6,7, and 8. thanks Magnetic field and Magnetic Force due...

    I only need help with questions 4,5,6,7, and 8. thanks Magnetic field and Magnetic Force due to a (long, straight) current PHYS 181 - in class problem set An infinitely long conductor carrying current is bent at a right angle as shown in Figure 1. Point P is located a distance b from the corner of the wire. Only one section of this current contributes to the magnetic field at pt. P. Why? The general formula (derived from the Biot-Savart...

  • I've figured out A-C, I'm just not sure how to start D and E Problem 5:...

    I've figured out A-C, I'm just not sure how to start D and E Problem 5: A spherica charge Q-25 nC. The capacitance for this spherical capacitor is given by the equation C-4τε0R l capacitor consists of a single conducting sphere of radius R-12 cm that carries a positive Part (a) Write an equation for the energy stored in a spherical capacitor when a charge Q is placed on the capacitor. Write your equation in terms of R, Q, and...

  • "question 2 from pset 2" 4. Place an electric dipole in the electric field you found...

    "question 2 from pset 2" 4. Place an electric dipole in the electric field you found in problem 9 on PSET 2, such that the dipole moment points along the positive x-axis. In a figure, show the direction of the electric field, the dipole moment and the torque exerted by this field on the dipole. Determine the torque on the dipole due to the external electric field, and the work that the electric field does to rotate the dipole into...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT