Question

1. A particle of mass m moves in three dimensions, and has position r(t)-(x(t), y(t), z(t)) at time t. The particle has poten Mechanics. Need help with c) and d)

0 0
Add a comment Improve this question Transcribed image text
Answer #1


ra, constant , 4。 V : at (0,0,o) S o Hun c x-χο of m t F3 (2-2) 2JH っ及 8 5 (dつ Sol 2 k lt 2. (0,0,0) 1、1-0水: 0 2 2 m (2-42. าวา other guuy as

Add a comment
Know the answer?
Add Answer to:
1. A particle of mass m moves in three dimensions, and has position r(t)-(x(t), y(t), z(t)) at ti...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3. A particle of mass m moves in one dimension, and has position r(t) at time t. The particle has...

    Mechanics. 3. A particle of mass m moves in one dimension, and has position r(t) at time t. The particle has potential energy V(x) and its relativistic Lagrangian is given by where mo is the rest mass of the particle and c is the speed of light (a) Writing qr and denoting by p its associated canonical momenta, show that the Hamiltonian is given by (show it from first principles rather than using the energy mzc2 6 marks (b) Write...

  • A particle of mass m is in a potential energy field described by, V(x, y) =...

    A particle of mass m is in a potential energy field described by, V(x, y) = 18kx² +8ky? where k is a positive constant. Initially the particle is resting at the origin (0,0). At time t = 0 the particle receives a kick that imparts to it an initial velocity (vo, 2vo). (a) Find the position of the particle as a function of time, x(t) and y(t). (b) Plot the trajectory for this motion (Lissajous figure) using Vo = 1,...

  • #1 A particle of mass, m, moves in a field whose potential energy in spherical coordinates...

    #1 A particle of mass, m, moves in a field whose potential energy in spherical coordinates has a 2 , where r and are the standard variables of spherical coordinates and k is a positive constant. Find Hamiltonian and Hamilton's equations of motion for this particle. form of V --k cose

  • 2.5 ty which will be discussed in chapter 4 2.3 Consider a particle of mass m...

    2.5 ty which will be discussed in chapter 4 2.3 Consider a particle of mass m subject to a one-dimensional potential V(x) that is given by V = 0, x <0; V = 0, 0<x<a; V = Vo, x> Show that bound (E < Vo) states of this system exist only if k cotka = -K where k2 = 2mE/12 and k' = 2m(Vo - E)/h4. 2.4 Show that if Vo = 974/2ma, only one bound state of the system...

  • 1. (20 marks) This question is about the system of differential equations Y. dt=(k 1 (a) Consider the case k = 0. i...

    1. (20 marks) This question is about the system of differential equations Y. dt=(k 1 (a) Consider the case k = 0. i. Determine the type of equilibrium at (0,0) (e.g., sink, spiral source). ii. Write down the general solution. iii. Sketch a phase portrait for the system. (b) Now consider the case k3 In this case, the matrix has an eigenvalue 2+V/2 with eigenvector i. -1+iv2 and an eigenvalue 2 iv2 with eigenvector . Determine the type of equilibrium...

  • If a particle with mass m moves with position ! r(t), then, the angular momentum is...

    If a particle with mass m moves with position ! r(t), then, the angular momentum is defined as ! L(t) = m! r(t) × ! v (t) and its torque is ! τ (t) = m! r(t) × ! a(t). Show that ! L′(t) = ! τ (t) . What are the consequences for both ! a(t) and ! L(t) when ! τ (t) = ! 0 for all t? THIS IS CALC 3 VECTOR STUFF MUST USE CALCULUS

  • A particle moves along a curve with parametric equations x(t) = ln(t+1), y(t) = sin(t), z(t)...

    A particle moves along a curve with parametric equations x(t) = ln(t+1), y(t) = sin(t), z(t) = 3t, where t is time. Determine the speed of the particle at t = 0.

  • 1) A particle with mass m moves under the influence of a potential field . The...

    1) A particle with mass m moves under the influence of a potential field . The particle wave function is stated by: for where and are constants. (a) Show that is not time dependent. (b) Determine as the normalization constant. (c) Calculate the energy and momentum of the particle. (d) Show that V (x /km/2h+it/k/m Aar exp (ar, t) We were unable to transcribe this imageWe were unable to transcribe this imageWe were unable to transcribe this imageWe were unable...

  • Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, inciden...

    Scattering #1 Consider the "downstep" potential shown. A particle of mass m and energy E, incident from the left, strikes a potential energy drop-off of depth Vo 0 (2 pts) Using classical physics, consider a particle incident with speed vo. Use conservation of energy to find the speed on the right vf. ALSO, what is the probability that a given particle will "transmit" from the left side to the right side (again, classically)? A. B. (4 pts) This problem is...

  • In class we considered quantum tunneling of a particle of energy Eo through a barrier of...

    In class we considered quantum tunneling of a particle of energy Eo through a barrier of potential Vofor Vo > Eo. Here we focus on two aspects of the problem we ignored in class. In order to simplify we will only consider the initial first half of the barrier as shown below RegionI xS0 Regionx 20 Il There are two cases to consider: Eo< Vo Considered in class E>Vo Not considered in class Here we will focus on the second...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT