Question

Combustor Gas turbine :Compressor- Turbine Air inlet- 7 Heat-recovery steam generator Turbine Vapor cycle W) Pump Condenser C

Consider Figure 1 above. The following information is given a. p- 14.7 psia, T 540 °R b. P/p1 12.0 С. Т,-2500,R d, P,-14.7 p

please solve the problem, it is thermo-design problem, please do in details, thank you

Combustor Gas turbine :Compressor- Turbine Air inlet- 7 Heat-recovery steam generator Turbine Vapor cycle W) Pump Condenser Cooling water Figure 1: Combined gas turbine-vapor power plant
Consider Figure 1 above. The following information is given a. p- 14.7 psia, T 540 °R b. P/p1 12.0 С. Т,-2500,"R d, P,-14.7 psia, Ts-700. "R (Rankine) e. P 1000. psia f. P 1.00 psia, x>0.85 or superheated The isentropic efficiencies for the turbines, the compressor and the pump are 100%. Make the usual assumptions regarding pressure drops and changes in potential and kinetic energy. The heat exchanger effectiveness is 85%. Determine the overall combined cycle thermal efficiency and the net power produced per one lb/s of air flow for various (possible) values of T and compare the highest combined cycle thermal efficiency with the cycle thermal efficiency of an "equivalent" (a, b, and c (above) apply) internally reversible, Brayton cycle with regeneration (85% effectiveness) and with the cycle thermal efficiency of the "best" internally reversible, simple Rankine cycle. Check the internet (provide the references) to determine some realistic values for the turbine inlet state. Provide results for several assumed inlet states. Comment on what you have learned from the solutions to this problem. What do you see as the major advantages /disadvantages of (provide references): a. a combined Brayton/Rankine cycle b. a Brayton cycle alone c. a Rankine cycle alone? what are the best uses of each of the three cycles, i.e., under what conditions would one be selected over the other two? Provide references.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Combustoy Am Exhadst ST 6 Ston qurton 2- apouh PuMN o ccoli iven P,.Up7 psia=1.0135 BanNo T) T 0.338 baona haat excharen 1- QSStura. 居こ 0,067947 SS 8639 0, gSㅈ (2571-6-16332) 、NO Wo dora T.-T,006.48 3 138 not fansabl 9- Heat ooded Net Heat oddud * Cu3-2u -|99 と 396489ナ125No Net p pod Ca foton on pin be poblen

Add a comment
Know the answer?
Add Answer to:
Combustor Gas turbine :Compressor- Turbine Air inlet- 7 Heat-recovery steam generator Turbine Vap...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • please solve the problem, it is thermo-design problem, please do in details, thank you Combustor Gas...

    please solve the problem, it is thermo-design problem, please do in details, thank you Combustor Gas turbine :Compressor- Turbine Air inlet- 7 Heat-recovery steam generator Turbine Vapor cycle W) Pump Condenser Cooling water Figure 1: Combined gas turbine-vapor power plant Consider Figure 1 above. The following information is given a. p- 14.7 psia, T 540 °R b. P/p1 12.0 С. Т,-2500,"R d, P,-14.7 psia, Ts-700. "R (Rankine) e. P 1000. psia f. P 1.00 psia, x>0.85 or superheated The isentropic...

  • 1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle...

    1. A combined gas-steam power cycle uses a single gas turbine cycle for the air cycle and a simple Rankine cycle for the water vapor cycle. Atmospheric air enters the compressor at a rate of 88.2 lbm / s, at 14.7 psia and 59 ° F, and the maximum gas cycle temperature is 1,742 ° F. The pressure ratio in the compressor is 7. The isentropic efficiency of both the compressor and the turbine is 80%. Gas exits the heat...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • WGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor ...

    wGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor Pi 100 kPa Regenerator Evaporator Turbine Generator Vapor turbine cycde (VTC) T, = T, + 20 K Condenser 10 Pump Saturated liquid A combined cycle plant operates with a topping gas turbine and a bottoming vapor turbine cycle. The working fluid in the vapor turbine cycle is water. The gas turbine cycle (GTC) electric generator produces 100kW of electric power For air use...

  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • please show work for all sub parts A combined cycle gas turbine / vapor power plant...

    please show work for all sub parts A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output...

  • Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor...

    Thermodynamics 2: STARTING FROM QS 2) 1) In an ideal Brayton cycle air enters the compressor at T = 300K and P = 1 bar with a volumetric flow rate = 20 m3/s. Air enters the turbine at P = 10 bar and T = 1800K. Find: a) The thermal efficiency b) The backwork ratio c) The net power generation in MW 2) For the same states above consider a cycle where the isentropic efficiency of the compressor and turbine...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

  • Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency...

    Consider the combined gas-steam power cycle,The topping cycle is a gas-turbine cycle that has a pressure ratio of 8.Air enters the compressor at 300K and the turbine at 1300K.The isentropic efficiency of the compressor is 80 percent, and that of the gas is 85 percent.The bottoming cycle is a simple ideal Rankine cycle operating between the pressures limits of 7 MPa and 5 KPa.Steam is heated in a heat exchanger by the exahust gases to a temperature of 5000C.The exhaust...

  • Question B (15 marks) You are to analyze a combined cycle that consists of a gas (air) turbine cy...

    Energy Convertion hello, please help me quickly please please thank you Question B (15 marks) You are to analyze a combined cycle that consists of a gas (air) turbine cycle (top) ttom). The gas cycle has the following operating conditions: inlet pressure to compressor one bar inlet temperature-300 K operating pressure ratio-12 Maxmum allowable temperature 1150 °C adiabatic efficiency for compressor 0.83 adiabatic efficiency for turbine-0.87 - - The exhaust leaves stack at 120 °C after vaporizing water in the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT