Question

(30 pts) A D.C. motor is shown below, where the inductance L and the resistance R model the armature circuit. The voltage Vb
0 0
Add a comment Improve this question Transcribed image text
Answer #1

at 1 2 イ jt d大2 dk dt 七 大[f dJ 中d4 つつ に中 . B Racti on。

Hope this helps

Add a comment
Know the answer?
Add Answer to:
(30 pts) A D.C. motor is shown below, where the inductance L and the resistance R model the armat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • D.C. motor is shown below, where the inductance L and the resistance R model the armature...

    D.C. motor is shown below, where the inductance L and the resistance R model the armature circuit. The voltage Vbrepresents the back-emf which is proportional to dθ/dt via Kf. The torque T generated by the motor is proportional to the i via a constant Kt. In this application, let the constants Kt = Kf. The inertia J represents the combined inertia of the motor and load. The viscous friction acting on the output shaft is b. Attached to the shaft...

  • D.C. motor is shown below, where the inductance L and the resistance R model the armature circuit. The voltage Vbrepresents the back-emf which is proportional to dθ/dt via Kf. The torque T generated b...

    D.C. motor is shown below, where the inductance L and the resistance R model the armature circuit. The voltage Vbrepresents the back-emf which is proportional to dθ/dt via Kf. The torque T generated by the motor is proportional to the i via a constant Kt. In this application, let the constants Kt = Kf. The inertia Jrepresents the combined inertia of the motor and load. The viscous friction acting on the output shaft is b. Attached to the shaft is...

  • Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,...

    Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,. The torque and back-EMF constants of the motor are Ko K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is 1- (not shown), and the motor inductance is negligible. The motor load is an inertia J with compliance (stiffness) K and viscous friction coefficient b, and it is attached a gear pair...

  • 01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to...

    01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to a current source is the torque and back-EMF constants of the motor are K. K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is I. (not shown), and the motor inductance is negligible. The motor load is an inertia compliance (stiffness) K and viscous friction coefficient b, and it is attached to the motor via a gear...

  • Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the s...

    Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the system is the applied armature voltage ea and the output is the load shaft position θ2. Assume also the following numerical values for the components: Ra-) Armature winding resistance = 0.2Ω La → Armature winding inductance = 0.1 mH Kb-) Back emf constant 0.05 Vs/rad K > Motor torque constant 0.06 Nm/A Jr Moment of inertia of the rotor of the motor =...

  • Figure Q1(b) shows the simplified diagram of the armature controlled D.C. b) servomotors used in instruments...

    Figure Q1(b) shows the simplified diagram of the armature controlled D.C. b) servomotors used in instruments and employed a fixed permane nt magnet field. The control signal is app lied to the amature terminals. The inductance of armature winding is negligible. Obtain the transfer function of the servo mot or (assume K, K, and K, are constant) i) (10marks) Derive a state spa ce model for the servomotor (armature resistance is 0.2) (5marks) i) La Fixed field (if) Ra ww00...

  • 2. (20 points) A field controlled DC motor model is given below where eaſt) is an...

    2. (20 points) A field controlled DC motor model is given below where eaſt) is an applied input voltage, ia(t) is the armature current, Ra and La are the armature resistance and inductance, respectively, e(t) is a back (or counter) emf (electro-motive force) le (t) = K w here K is a motor (torque) constant, t(t) is the torque generated by the motor, w(t) is the angular velocity, 0(t) is the angular position, J represents the rotor inertia and load...

  • A simple but practical feedback control system is shown below. It is a positioning system or posi...

    please solve this problem with detail description. A simple but practical feedback control system is shown below. It is a positioning system or position servo for a large video satellite antenna modeled as a mass having a large moment of inertia, J. An output potentiometer measures the output shaft position, converting the position to a proportional voltage according to vo-Kye. where, e is the output shaft angle in radians and vo is the output potentiometer voltage; Kp is the constant...

  • Consider the system given below. The output is y(displacement from equilibrium position) and the input is...

    Consider the system given below. The output is y(displacement from equilibrium position) and the input is V. (source voltage). The motor has an electrical constant Ke, a torque constant K, an armature inductance Lg and a resistance R. The rotor, shaft and disk together have inertia J and a viscous friction coefficient B. The disk has a radius ofr. (For the motor, assume that the torque is T = Ki,, and the back EMF is emf = KO). a. Derive...

  • A permanent magnet DC motor is supplied from a 12 V source and turns at 500...

    A permanent magnet DC motor is supplied from a 12 V source and turns at 500 RPM (steady-state) experimentally determined as 0.1 Nms2 and the frictions are negligible. The electrical parameters of the rotor winding are measured 0.82, and 5mH. Obtain the transfer function of the motor by considering the armature voltage as input and shaft speed in rad/s as output. with an armature current of 1A. The moment of inertia is

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT