Question

Draw the diagram for the unity feedback control system, that is, the electro-mechanical system with controller and feedback u

the translational link. The robot has an torque motor for a joint in Flgure1 ropresents a Single Joint robot model wnh Figure

Table 1: Information for the Electro-Mechanical System 1 DOF Robot Parameters 1.140 Nms Da 0.00148 rad R lohm ohm 0.0048 I [A

Draw the diagram for the unity feedback control system, that is, the electro-mechanical system with controller and feedback using general parameters. 3) 4) Calculate K and K using the Torque-Speed curve (Figure 2), and information from Table 1
the translational link. The robot has an torque motor for a joint in Flgure1 ropresents a Single Joint robot model wnh Figure 1: Singla Joint Robot Model TONm) 恭.east Figure 2: Torque-Speed Qurve J Ikgm21-Armature Inertia DArmature Damping Coefficient R, [ohm]-Armature Resistance J [kgm1-Load Inertia DLoad Damping Coefficient N Number of eeth of the input gear (motor rad Nms rad gear) ohm LArmature Inductance Number of teeth of the cutput gear (load gear) m[kg-Translational link mass I. [A]-Armature Current Ns Doad Damping Coeffiient V-Armature Voltage Tnair [Nm)- Stal Torque rIm1 radius rad o-1-No-load angular velocity
Table 1: Information for the Electro-Mechanical System 1 DOF Robot Parameters 1.140 Nms Da 0.00148 rad R lohm ohm 0.0048 I [A] 8.25 97.2 150 10 np-load Nms 100 150
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Jat Cel load Jq 4 Load J TL OL_ o12ott TalsJ JaSt Vb blocK -NJ LS Ra tlas Kr Vals) Vstal on both Vatu eg 4S , 4. S4572 . KTXb 3-14 004S so 4- 54S72 XIso O 3 kr Kb 6.3

Add a comment
Know the answer?
Add Answer to:
Draw the diagram for the unity feedback control system, that is, the electro-mechanical system wi...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1) Develop the electrical and mechanical equations for the electro-mechanical system. 2) Develop ...

    1) Develop the electrical and mechanical equations for the electro-mechanical system. 2) Develop the transfer function G(s) for the electro-mechanical system We were unable to transcribe this imageTable 1: Information for the Electro-Mechanical System 1 DOF Robot Parameters 1.140 Nms Da 0.00148 rad R lohm ohm 0.0048 I [A] 8.25 97.2 150 10 np-load Nms 100 150 1) Develop the electrical and mechanical equations for the electro-mechanical system. 2) Develop the transfer function G(s) for the electro-mechanical system Table 1:...

  • u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with...

    u(t) ta(t) e(t) A DC motor is a electro-mechanical system, where mechanical motor is coupled with an electrical circuit. The motor shows up in the circuit equation as a voltage loss proportional to the motor speed, and the electrical system shows up as the input torque proportional to the armatura current DC motor equations are given by dw(t) dialt) where J is the mass moment of inertia in kg-m2, b is the damping coefficient in N-m-s, K is the motor...

  • Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the s...

    Problem-5 (20 pts): Consider the DC servo motor shown in Figure-5. Assume that the input of the system is the applied armature voltage ea and the output is the load shaft position θ2. Assume also the following numerical values for the components: Ra-) Armature winding resistance = 0.2Ω La → Armature winding inductance = 0.1 mH Kb-) Back emf constant 0.05 Vs/rad K > Motor torque constant 0.06 Nm/A Jr Moment of inertia of the rotor of the motor =...

  • Control Lab

    Obtain the Simulink diagram of position control system shown in figure 1 and run the simulation. Assume the following numerical values for system constants:r = angular displacement of reference input shaft, radiansc = angular displacement of the output shaft, radiansθ = angular displacement of the motor shaft, radiansk1 = gain of the potentiometer error detector = 24/π volt/radkp = amplifier gain = 10 volt/voltea = applied armature voltage, volteb = back emf, voltRa = armature resistance, ohmsLa = armature winding...

  • Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,...

    Q 1- 08 Pts) Figure below is a diagram of a DC motor connected in parnllel to a current source i,. The torque and back-EMF constants of the motor are Ko K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is 1- (not shown), and the motor inductance is negligible. The motor load is an inertia J with compliance (stiffness) K and viscous friction coefficient b, and it is attached a gear pair...

  • 01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to...

    01- (08 Pts) Figure below is a diagram of a DC motor connected in parallel to a current source is the torque and back-EMF constants of the motor are K. K respectively, the motor resistance is R, also modeled as connected in parallel, the motor inertia is I. (not shown), and the motor inductance is negligible. The motor load is an inertia compliance (stiffness) K and viscous friction coefficient b, and it is attached to the motor via a gear...

  • Consider the DC motor-driven wheeled mobile robot shown in figure, in which m is the mass...

    Consider the DC motor-driven wheeled mobile robot shown in figure, in which m is the mass of the wheeled mobile robot, r is the radius of the driving wheel, and T is the torque delivered to the wheeled mobile robot by the DC motor. For simplicity, the motion is restricted to one spatial dimension. The figure also shows the simplified drive system, including the equivalent electrical circuit of the DC motor, the gears, and the driving wheel. The motor parameter...

  • 1. Consider a schematic diagram of the permanent magnet brushed DC motor used in Quanser system...

    1. Consider a schematic diagram of the permanent magnet brushed DC motor used in Quanser system with two inertia loads (Jh and J4) and no viscous damping as shown in Fig. 2-1.. Since there is no gear system, motor shaft angular position and velocity, 0m, and wm, respectively, are equal to disc load angular position and velocity 0, and w, respectively. Derive electrical and mechanical differential equations describing this DC motor dynamics, as well as the relationship between motor torque...

  • 3.2 Pre-Lab Assignment When deriving the governing equations for an electromechanical system, it is often beneficial...

    3.2 Pre-Lab Assignment When deriving the governing equations for an electromechanical system, it is often beneficial to examine the electrical and mechanical components independently. Looking at only the electrical components of the QUBE-Servo DC motor (as shown in Figure 3.2): R v00 C e, (00 Figure 3.2: Electrical curcuit of the QUBE-Servo DC motor Q1. Write the differential equation in the form of Kirchoff's voltage law) in the Laplace domain for the electrical circuit (do not use parameter values given...

  • i want to get part c,d The figure below is a gear-train mechanical system driven by...

    i want to get part c,d The figure below is a gear-train mechanical system driven by a prescribed motion in the form of an angular displacement y(t). The motion is caused by an applied torque T(t) generated by a motor. The mass moment of inertias of the motor and the driving gear are J and J, respectively, whereas the mass moment of inertias of the load and the driven gear are J, and J2, respectively. The radii and angular displacements...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT