Question

s+5 Consider a system where the transfer function is given as: G(s) -tS 3+6s2+11s+6 a. Sketch a root locus for static control

0 0
Add a comment Improve this question Transcribed image text
Answer #1

on lato ot,p-) - 90 canto idSP e-교. here be couse hese thas is no compe Be cn Pobrcac auny poin d l 498- 9 6414-6 Jト2 S--2619 , _b.u239メ -1.usy7 cenho 4- us u 2 0 n t

Add a comment
Know the answer?
Add Answer to:
S+5 Consider a system where the transfer function is given as: G(s) -tS 3+6s2+11s+6 a. Sketch a r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • answer 3 and 4 please 3. Consider the model of a spring-mass damper system, where the...

    answer 3 and 4 please 3. Consider the model of a spring-mass damper system, where the following parameter values are assumed: m 1,b 2,k2. a. Sketch a root locus for static controller gain K b. Design a controller to meet the following specifictions: ts ls,〈206, e(oo)|step = 0. 4. Consider a system where the transfer function is given as: G(s) =M63. s3 +6s2 +11s+6 a. Sketch a root locus for static controller gain K b. Design a controller to meet...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

  • Consider the unity feedback system is given below R(S) C(s) G(s) with transfer function: G() =...

    Consider the unity feedback system is given below R(S) C(s) G(s) with transfer function: G() = K(+2) s(s+ 1/s + 3)(+5) a) Sketch the root locus. Clearly indicate any asymptotes. b) Find the value of the gain K, that will make the system marginally stable. c) Find the value of the gain K, for which the closed-loop transfer function will have a pole on the real axis at (-0.5).

  • Consider the transfer function of a DC motor given by G(s) = 1 / s(s+2) 3. Consider the transfer function of a DC motor...

    Consider the transfer function of a DC motor given by G(s) = 1 / s(s+2) 3. Consider the transfer function of a DC motor given by 1 G(s) s (s2) The objective of this question is to consider the problem of control design for this DC motor, with the feedback control architecture shown in the figure below d(t r(t) e(t) e(t) C(s) G(s) Figure 4: A feedback control system (a) Find the magnitude and the phase of the frequency response...

  • Consider the model of a spring-mass-damper system, where the following parameter values are assum...

    Consider the model of a spring-mass-damper system, where the following parameter values are assumed: m-1,b 2, k- 2. a. Write down the transfer function of the system b. Sketch a root locus for static controller gain K c. Find the range of K for stability Consider the model of a spring-mass-damper system, where the following parameter values are assumed: m-1,b 2, k- 2. a. Write down the transfer function of the system b. Sketch a root locus for static controller...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain K as a variable s(s+4) (s2+4s+20)' Determine asymptotes, centroid,, breakaway point, angle of departure, and the gain at which root locus crosses jw -axis. [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain...

  • Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) -...

    Q2. Fig Q2 shows the block diagram of an unstable system with transfer function G(s) - under the control of a lead compensator (a) Using the Routh's stability criterion, determine the conditions on k and a so that the closed-loop system is stable, and sketch the region on the (k, a)- plane where the conditions are satisfied. Hence, determine the minimum value of k for the lead compensator to be a feasible stabilizing controller. (10 marks) (b) Suppose α-2. Given...

  • only b and c please 1 Consider the system whose transfer function is given by: G(S)...

    only b and c please 1 Consider the system whose transfer function is given by: G(S) == (2s +1)(s+3) unction is given by: G(s) - (a) Use the root-locus design methodology to design a lead compensator that will provide a closed-loop damping 5 =0.4 and a natural frequency on =9 rad/sec. The general transfer function for lead compensation is given by D(5)=K (977), p>z, 2=2 (b) Use MATLAB to plot the root locus of the feed-forward transfer function, D(s)*G(s), and...

  • Consider the system with open-loop transfer function s+2 G(s) = k 82 4 Show the type...

    Consider the system with open-loop transfer function s+2 G(s) = k 82 4 Show the type of poles that the close-loop system has (real, imaginary, or repeated) for the different values ofk in [0 +00). Sketch the root locus of the close-loop system's poles when the gain k takes values in [0 +oo). Show clearly the break points of the loci, and calculate analytically the values that the branches of the loci are converging when k o

  • 17. Consider unity feedback system with uncompensated forward transfer function a given by: K G(s) s+3)(s 6) The system...

    17. Consider unity feedback system with uncompensated forward transfer function a given by: K G(s) s+3)(s 6) The system requires a damping ratio of 0.5. If the design point is at -1.54 j2.66, design a PI controller to drive the steady-state error of the response to zero 17. Consider unity feedback system with uncompensated forward transfer function a given by: K G(s) s+3)(s 6) The system requires a damping ratio of 0.5. If the design point is at -1.54 j2.66,...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT