Question

4. Below is an image of the fringe pattern produced by two identical slits and light of wavelength, 600 nm. The pattern is pr

0 0
Add a comment Improve this question Transcribed image text
Answer #1

4a)

X = Fringe width = Distance between consecutive dark or bright = 4cm ( from the figure )

X = \lambdaD/d,  \lambda = wavelength , D = 1 m , d = distance between slits

d = \lambda D / X = 600 * 10^-9 * 1 / 4 * 10^-2 = 1.5 * 10 ^-5 m

Add a comment
Know the answer?
Add Answer to:
4. Below is an image of the fringe pattern produced by two identical slits and light of wavelengt...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Light from a laser passes through a pair of slits and forms a pattern on a...

    Light from a laser passes through a pair of slits and forms a pattern on a screen 4 meters from the slits. The slits are 50?m wide and are 0.1mm apart. a) If the wavelength of the laser is 650 nm, sketch the pattern made on the screen. b) Calculate the spacing between fringes and the width of the central maximum. c) A wedge of material is slipped in front of one slit until the central bright fringe disappears (a...

  • Light of wavelength 440 nm passes through two slits of equal width, yielding an interference pattern...

    Light of wavelength 440 nm passes through two slits of equal width, yielding an interference pattern whose graph of intensity versus angular position theta is shown in the figure. (a) Calculate the width of each slit. Explain your method. (b) Calculate the distance between the two slits. Explain your reasoning. (c) Suppose the width of each of the slits is doubled, but the separation of the two slits does not change. Sketch the new intensity pattern on the graph below....

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen...

    Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits? Draw the slits • Draw the screen a distance L from the slits • Draw the paths from each slit • Mark the bright locations on the screen. Start with the double slit bright fringe...

  • 1. A single slit forms a diffraction pattern, with the second minimum at an angle of...

    1. A single slit forms a diffraction pattern, with the second minimum at an angle of 40.0° from central maximum, when monochromatic light of wavelength 630 nm is used. What is the width of the single slit? 2. Consider a two-slit experiment in which the slit separation is 3.0 × 10-5 m and the interference pattern is observed on a screen that is 2.00 m away from the slits. The wavelength of light passing through the slits is 420 nm....

  • D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the...

    PLEASE ANSWER 3 AND 5 SHOW ALL ALGEBRA STEPS D) More information needed. 3. Monochromatic light falling on two slits 0.5 mm apart produces the second order fringe at 0.15 angle. The interference pattern from the slits is projected onto a screen that is 3.00 m away (a) What is the wavelength of the light used (in nm)? (b) What is the separation distance (in mm) on the screen of the second bright fringe from the central bright fringe? (c)...

  • 7. (a) In a lecture demonstration laser light is used to illuminate two identical narrow slits...

    7. (a) In a lecture demonstration laser light is used to illuminate two identical narrow slits that are separated by 0.2 min, and the interference pattern is viewed on a screen 6 m away. The distance on the screen to the 27" bright fringe is 30.0 cm from the center of attern. What is the wavelength of the light? ci sin silloin (b) If one of the slits is covered it is observed that the first diffraction minimum from the...

  • Light of wavelength 660 nm falls on two slits and produces an interference pattern in which...

    Light of wavelength 660 nm falls on two slits and produces an interference pattern in which the third-order bright red fringe is 34 mm from the central fringe on a screen 2.8 m away. What is the separation of the two slits? d= ??

  • Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...

    Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 7 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 21.5 mm...

  • Parallel rays of monochromatic light with wavelength 585 nm illuminate two identical slits

    Parallel rays of monochromatic light with wavelength 585 nm illuminate two identical slits and produce an interference pattern on a screen that is 75.0 cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm. Part AIf the intensity at the center of the central maximum is 3.30*10-4 W/m2 , what is the intensity at a point on the screen that is 0.870 mm from the center of the central...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT