Question

peak of the stability curve occurs at s Fe, which is why iron is prominent in the spectrum of the Sun and stars. Show that Fe

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution, Am (gas) Ar sbfa 30 SS 334342 0-s234 3.390

Add a comment
Know the answer?
Add Answer to:
Peak of the stability curve occurs at s Fe, which is why iron is prominent in the spectrum of the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The extremes of the x-ray portion of the electromagnetic spectrum range from lambda = 1.0 times...

    The extremes of the x-ray portion of the electromagnetic spectrum range from lambda = 1.0 times 10^-8 m to 1.0 times 10^-1.3 m. Find the minimum accelerating voltages required to produce wavelengths at these two extremes. V = For 1.0 times 10^-8 m, Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize...

  • A uniformly charged disk of radius 35.0 cm carries a charge density of 6.00 x 103...

    A uniformly charged disk of radius 35.0 cm carries a charge density of 6.00 x 103 C/m2. Calculate the electric field on the axis of the disk at the following distances from the center of the disk. (a) 5.00 cm 302 Your response is within 10% of the correct value This may be due to roundoff error, or you could have a mistake in your calculation least four-digit accuracy to minimize roundoff error. MN/C carry out all ntermediate results to,...

  • A 7.80-9 bullet moving at 470 m/s penetrates a tree trunk to a depth of 4.90...

    A 7.80-9 bullet moving at 470 m/s penetrates a tree trunk to a depth of 4.90 cm. (a) Use work and energy considerations to find the average frictional force that stops the bullet. 18728.48 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. N (b) Assuming the frictional force is...

  • The two charges in the figure below are separated by d-3.50 cm. (Let q113.0 nC and...

    The two charges in the figure below are separated by d-3.50 cm. (Let q113.0 nC and q2 25.5 nC) 60.0° B 92 (a) Find the electric potential at point A 3.1 Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Ca accuracy to minimize roundoff error. kV out all intermediate results to at least four-digit (b) Find the electric potential at point B, which...

  • Switch S shown in the figure below has been closed for a long time, and the...

    Switch S shown in the figure below has been closed for a long time, and the electric circuit carries a constant current. Take C 3.00 F, C2 6.00 uF, R1 = 4.00 k, and R2 = 7.00 k. The power delivered to R2 is 2.00 W. R C - S R, (a) Find the charge on C. Q 222.18 Your response is within 10 % of the correct value. This may be due to roundoff error, or you could have...

  • A race car moves such that its position fits the relationship x = (5.5 m/s)t +...

    A race car moves such that its position fits the relationship x = (5.5 m/s)t + (0.85 m/s3)t3 where x is measured in meters and t in seconds. (b) bo termine the instantane os decimal places in your answer.) elocity or the ear at t 、75, using time intervals of 0 40 s, o 20 s, and 0.10 s (in order to better see the limiting process keep at least three t65 68 n iO% of the correct value. This...

  • water is flowing in the pipe shown in the figure below, with the 8.25-cm diameter at...

    water is flowing in the pipe shown in the figure below, with the 8.25-cm diameter at point 1 tapering to 3.45 cm at point 2, located y = 13.0 cm below point 1 . The water pressure at point 1 3.20 x 104 Pa and decreases by 50% at point 2. Assume steady, ideal flow, what is the speed of the water at the folowing Points? (a) point 1 Your response is within 10% of the correct value. This may...

  • PRACTICE IT Use the worked example above to help you solve this problem. Charge q1 6.90...

    PRACTICE IT Use the worked example above to help you solve this problem. Charge q1 6.90 uC is at the origin, and charge 92 =-4.90 pC is on the x-axis, 0.300 m from the origin (see figure). (a) Find the magnitude and direction of the electric field at point P, which has coordinates (O, 0.400) m. 2.53e5 magnitude Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake...

  • = 1.18 12, R2 = 2.20 2, R3 = 3.07 N, R4 = 4.16 1, R5...

    = 1.18 12, R2 = 2.20 2, R3 = 3.07 N, R4 = 4.16 1, R5 = 6.04 N. Due to the nature of this problem, do not use rounded intermediate The figure below shows five resistors and two batteries connected in a circuit. What are the currents 11, 12, and 13? (Consider the following values: R1 values in your calculations—including answers submitted in WebAssign. Indicate the direction with the sign of your answer.) 11 Your response is within 10%...

  • A series RLC circuit driven by a source with an amplitude of 120.0 V and a...

    A series RLC circuit driven by a source with an amplitude of 120.0 V and a frequency of 50.0 Hz has an inductance of 797 mH, a resistance of 289 Q, and a capacitance of 47.1 pF. (a) What are the maximum current and the phase angle between the current and the source emf in this circuit? 265.07 x Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. A 29.59...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT