Question

Problem 1 Using what we have leamed in chapter 1, derive, for a semiconductor, the expressions of The total current density C

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ne dlr dncocen.rnbent A Arca of cross seer d乂 Dr), DP Diffus) meensrf electron 사401 D Da ft current Density of ereca Sini laa

Add a comment
Know the answer?
Add Answer to:
Problem 1 Using what we have leamed in chapter 1, derive, for a semiconductor, the expressions of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a...

    this is a problem of semiconductor device and fundamentals. Problem 4: pn Junction Current Distributions Consider a Si pn step junction diode maintained at room temperature, with p-side and n-side dopant concentrations NA 1016 cm3 and Np-2x1016 cm3, respectively. (You may assume that each side is uncompensated.) The minority carrier recombination lifetimes are τ,-10-6 s and τ,-10-7 s on the p-side and n-side, respectively a) Calculate the minority carrier densities at the edges of the depletion region when the applied...

  • A pn junction diode is made of a new semiconductor with 10^16cm-3 donors in the n...

    A pn junction diode is made of a new semiconductor with 10^16cm-3 donors in the n side and 2x10^17cm-3 acceptors on the p-side. Intrinsic carrier concentration is same as silicon 10^10cm-3at room temperature. Let's assume that a forward bias voltage is applied in a way that it create following minority carrier concentrations in quasi neutral regions. p(x) =10^4 + 10^14/[1+10^4(x-xn)] (cm-3) where x>xn>0 and n(x) = 500-10^15/[10^4(x+xp)-1] (cm-3) where x<-xp<0. x is given in cm scale. Calculate the total current...

  • A pn junction diode is made of a new semiconductor with 10^16cm-3 acceptors in the p...

    A pn junction diode is made of a new semiconductor with 10^16cm-3 acceptors in the p side and 2x10^17cm-3 donors on the n-side. Intrinsic carrier concentration is same as silicon 10^10cm-3 at room temperature. Let's assume that a forward bias voltage is applied in a way that it create following minority carrier concentrations in quasi neutral regions. n(x) =10^4 - 10^14/[10^4(x+xp)-1] (cm-3) where x<xp<0 and p(x) = 500+10^15/[10^4(x+xn)+1] (cm-3) where x>xn>0. x is given in cm scale. Calculate the total...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • 1. Draw the schematics of forward-biased and negative-biased diodes. Show the polarity of voltage source (positive...

    1. Draw the schematics of forward-biased and negative-biased diodes. Show the polarity of voltage source (positive and negative terminal of the source), the position of Fermi levels and the current direction. Explain why there is a small current flow when a p-n junction is under reverse bias. 2. A p-n junction can be made by diffusing acceptor atoms into an n-type semiconductor. Suppose that boron is diffused into a silicon wafer doped with arsenic at 1015 cm-3 such that the...

  • Problem 1 (25 points) Consider a silicon pn junction with a cross section area of 1x105 cm, a forward bias Va 0.5V, and the following parameters at T- 300K: 16cm-3 15 3 -6 KT n: 1.5x100 cm", ε&#3...

    Problem 1 (25 points) Consider a silicon pn junction with a cross section area of 1x105 cm, a forward bias Va 0.5V, and the following parameters at T- 300K: 16cm-3 15 3 -6 KT n: 1.5x100 cm", ε' = 1 1 .7x 8.854x 10-14 Flon;ー-0.025 V Assume the critical field to be equal to 3x105 V/cm. a) (5 points) Compare the hole density at xn to the electron density at-Xp b) (5 points) Compare the hole current at xn to...

  • The ratio of hole to electron current for 0.65 V applied bias in a long-base, abrupt p-n junction...

    the ratio of hole to electron current for 0.65 V applied bias in a long-base, abrupt p-n junction de made from silicon having Na-100cm" and Nd-5x10"cm". The carrier lifetimes are 2 μ Sketch the magnitude of the electric field across the junction. [4 pts.] the ratio of hole to electron current for 0.65 V applied bias in a long-base, abrupt p-n junction de made from silicon having Na-100cm" and Nd-5x10"cm". The carrier lifetimes are 2 μ Sketch the magnitude of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT