Question

Problem 2 The isentropic efficiency of a turbine is 90% when a steam at 500 °C 10 MPa , expands to 0.05 MPa saturated steam.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Go G. 8234 2o kPa 675 2s 28 2224.9 = 2339.9c2- 2. 2

Add a comment
Know the answer?
Add Answer to:
Problem 2 The isentropic efficiency of a turbine is 90% when a steam at 500 °C 10 MPa , expands t...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a reheat-cycle power plant, steam enters the high-pressure turbine at 5 MPa, 450°C, and expands...

    In a reheat-cycle power plant, steam enters the high-pressure turbine at 5 MPa, 450°C, and expands to 0.5 MPa, after which it is reheated to 450°C. The steam is then expanded through the low-pressure turbine to 7.5 kPa. Liquid water (Vi 0.001 m/kg) leaves the condensor at 30°C, is pumped to 5 MPa, and returned to the steam generator. Each turbine is adiabatic, with an isentropic efficiency of 81.6 % and the pump efficiency is 848 %. If the total...

  • An insulated steam turbine receives 30 kg of steam per second at 3 MPa, 350 °C....

    An insulated steam turbine receives 30 kg of steam per second at 3 MPa, 350 °C. At the point in the turbine where the pressure is 0.5 MPa, steam is bled off for processing equipment at the rate of 5 kg/s. The temperature of this steam is 200 °C. The balance of the steam leaves the turbine at 15 kPa, 90% quality. Determine the exergy per kilogram of the steam entering and at both points at which steam leaves the...

  • How do i solve C??? Please details Steam enters a two stage steady state turbine at 8 MPa and 500 C. It expands in the first stage to a state of 2 MPa and 350°C. Steam is then reheated at constant...

    How do i solve C??? Please details Steam enters a two stage steady state turbine at 8 MPa and 500 C. It expands in the first stage to a state of 2 MPa and 350°C. Steam is then reheated at constant pressure to a temperature of 500°C before it enters the second stage, where it exits at 30 kPa and a quality of 98%. The net power output of the turbine is 3 MW Assume the surroundings to be at...

  • Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s

    Steam enters an adiabatic turbine steadily at 7 MPa, 500 °C, and 45 m/s, and leaves at 100 kPa and 75 m/s. If the power output of the turbine is 5 MW and the isentropic efficiency is 77 percent, determine: A. the mass flow rate of steam through the turbine, B. the temperature at the turbine exit, and C. the rate of entropy generation during this process.

  • PROBLEM 1. Consider a Rankine cycle, where steam enters the turbine @ 5 Mpa, 500 *C...

    PROBLEM 1. Consider a Rankine cycle, where steam enters the turbine @ 5 Mpa, 500 *C and excits at 12.35 kPa. The cycle produce 10,000 KW of electricity. Determine the cycle efficiency and the steam amount needed. PROBLEM 2. For the figure below, find the cycle efficiency given the following: Consider 1 kg flowing The pressure at point 1, 5 and 6 are 10 kPa, 3000 kPa, and 1000 kPa. The temperature at point 5 is 350 °C. The steam...

  • Please show steps. Steam at 0.3 kg/s enters an adiabatic turbine at 2 MPa and 500°C....

    Please show steps. Steam at 0.3 kg/s enters an adiabatic turbine at 2 MPa and 500°C. It exits at 100 kPa. If the isentropic efficiency is 95%, how much power is produced, in units of kW? Correct Answer is 514.1 m/s Thank you.

  • Steam enters the turbine of a simple vapor power plant with a pressure of 12 Mpa...

    Steam enters the turbine of a simple vapor power plant with a pressure of 12 Mpa and a temperature of 600 ℃ and expands adiabatically to condenser pressure p. The isentropic efficiency of both the turbine and the pump is 84%. (a) For p = 30 kPa, determine the turbine exit quality and the cycle thermal efficiency.

  • A steam turbine operates with P1 = 5 MPa and T1 = 600 °C at the...

    A steam turbine operates with P1 = 5 MPa and T1 = 600 °C at the inlet, an exit pressure of P2 = 100 kPa, a mass flow rate of ?̇ = 100 kg/s, and an isentropic efficiency of η = 85%. Complete a thermodynamic analysis of the turbine, using the appropriate data for water, by finding: (A) The temperature at the exit, T2, (B) the work produced by the turbine, ?̇ ?, and (C) the rate of entropy production...

  • QUESTION 8 An adiabatic turbine expands steam from 500°C and 3.5 MPa to 200°C and 0.3...

    QUESTION 8 An adiabatic turbine expands steam from 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the turbine generates 750 kW, what is the flow rate of steam through the turbine? 1.28 lbm/sec .28 kg/hr 1.28 kg/sec 1.28 kg/min QUESTION 9 A steam turbine operates between 500°C and 3.5 MPa to 200°C and 0.3 MPa. If the turbine generates 750 kW and the heat loss is 100 kW what is the flow rate of steam through the turbine?...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT