Question

Use Bilinear Transform to design a lowpass Butterworth digital filter that passes frequencies up ...



Use Bilinear Transform to design a lowpass Butterworth digital filter that passes frequencies up to f=1500Hz with minimum gain -7dB. The filter is to block frequencies from f = 3600Hz with a maximum gain-38dB. The sampling frequency  is f = 8000 


a) Find the Butterworth Filter Order = (N), 3-dB Cutoff frequency, and the numerator and denominator coefficients of the H(z) 

b) Which of the frequencies in the followingx()will be passed by your designed filter?

x(t) = cos(1600πt)+5cos(8000πt)+3cos(2300πt)+ 2cos(1400πt)

1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Use Bilinear Transform to design a lowpass Butterworth digital filter that passes frequencies up ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Using the Bilinear Transform steps in Example-2 done in class, design a lowpass Butterworth digit...

    Using the Bilinear Transform steps in Example-2 done in class, design a lowpass Butterworth digital ülier thai passos frequencies up to f,, 12K1Iz with ınaximiin kxz; ofǎ_ (1,1A and stops frequences from, fs-24KHz with a minimum loss of δ2-0.3. The sanpling frequency isf 100KHz. Find the Butterworth Filter Order(N), 3-dB Cutoff frequency and the numerator and denominator coefficients of the H(z) by hand-calculation. Using the Bilinear Transform steps in Example-2 done in class, design a lowpass Butterworth digital ülier thai...

  • A digital low pass IIR filter is to be designed with Butterworth approximation using the Bilinear transformation

    A digital low pass IIR filter is to be designed with Butterworth approximation using the Bilinear transformation technique having the following specifications:(i)             Passband magnitude is constant within 1 dB for frequencies below 0.2 π.(ii)           Stopband attenuation is greater than 15 dB for frequencies between 0.3 π to π. Determine the order of the filter, cutoff frequency, poles location and transfer function of digital filter in order to meet the above specifications.     

  • Design lowpass IIR filter with the following specifications: Filter order = 2, Butterworth type C...

    Design lowpass IIR filter with the following specifications: Filter order = 2, Butterworth type Cut-off frequency=800 Hz Sampling rate =8000 Hz Design using the bilinear z-transform design method Print the lowpass IIR filter coefficients and plot the frequency responses using MATLAB. MATLAB>>freqz(bLP,aLP,512,8000); axis([0 4000 –40 1]); Label and print your graph. What is the filter gain at the cut-off frequency 800 Hz? What are the filter gains for the stopband at 2000 Hz and the passband at 50 Hz based...

  • 4. We wish to design a digital bandpass filter from a second-order analog lowpass Butterworth filter...

    4. We wish to design a digital bandpass filter from a second-order analog lowpass Butterworth filter prototype using the bilinear transformation. The cutoff frequencies (measured at the half-power points) for the digital filter should lie at ω 5t/12 and ω-7t/12. The analog prototype is given by 1 s2+/2s+1 with the half-power point at 2 Determine the system function for the digital bandpass filter. a) b) Make the transfer from LPF to BPF in the analog domain Make the transfer from...

  • Design a second order IIR Butterworth low pass digital filter with a cutoff frequency of 500...

    Design a second order IIR Butterworth low pass digital filter with a cutoff frequency of 500 Hz and a sampling frequency of 10,000 Hz using bilinear transformation then find the following:                               The output (response) due to the following inputs:             Sinusoidal signal with a frequency of 100Hz.             Sinusoidal signal with a frequency of 500Hz.             Sinusoidal signal with a frequency of 2000Hz.       Repeat (a) above for a 6thorder Butterworth filter

  • just do 4 , 3 is solved 3. Use a Bilinear Transform to design a Butterworth low-pass filter which satisfies the filter specifications: Pass band: -1Ss0 for 0sf s0.2 Stop band: (e/40 for 0.35sf s0....

    just do 4 , 3 is solved 3. Use a Bilinear Transform to design a Butterworth low-pass filter which satisfies the filter specifications: Pass band: -1Ss0 for 0sf s0.2 Stop band: (e/40 for 0.35sf s0.s Transition Band: 0.2<f<0.35 Sampling Frequency: 10 kHz a. (3) Determine the stop-band and pass-band frequencies, Fstop and Fpas, in kHz. b. (3) Calculate the fater order, n, which is necessary to obtain the desired filter specifications. (3) Calculate the corner frequency, Fe, if you want...

  • 1. Design a 10th-order lowpass FIR filter using the window method (fir1) to cut frequencies above...

    1. Design a 10th-order lowpass FIR filter using the window method (fir1) to cut frequencies above 30Hz in an application where the sampling frequency is 125 Hz. 2. Plot the filter coefficients that define the filter (stem). 3. Plot the frequency response of the FIR filter designed (freqz) 4. Design a 100th-order lowpass FIR filter using the window method (fir1) to cut frequencies above 30Hz in an application where the sampling frequency is 125 Hz. Plot the filter coefficients that...

  • 1. By using an analog filter with a Butterworth response of order 3, design a digital IIR low pass filter with 3-db cutoff frequency 2c 0.6TT a) b) c) Evaluate the transfer function of the analog fil...

    1. By using an analog filter with a Butterworth response of order 3, design a digital IIR low pass filter with 3-db cutoff frequency 2c 0.6TT a) b) c) Evaluate the transfer function of the analog filter (10marks) Skecth the block diagram of transfer function (5 marks) Plot the magnitude response of the filters. (5marks) 1. By using an analog filter with a Butterworth response of order 3, design a digital IIR low pass filter with 3-db cutoff frequency 2c...

  • 2. Perform a lowpass prototype transform, find, given the following digital filter frequency values. a. Low...

    2. Perform a lowpass prototype transform, find, given the following digital filter frequency values. a. Low pass filter with a cutoff of 750 Hz b. High pass filter with a cutoff of 12.57 rad/s c. Bandpass filter with a lower cutoff of 400 Hz and a higher cutoff 725 Hz d. Bandstop filter with a center frequency of 135.3 rad/s and a bandwidth of 84.74 rad/s

  • Discrete Time Signal Processing Question 1. Consider an IIR filter A(1-2-1 cos ω0) 1-2cos ω02-1+2...

    Discrete Time Signal Processing Question 1. Consider an IIR filter A(1-2-1 cos ω0) 1-2cos ω02-1+2 I. Compute its impulse response using the difference equation with an impulse signal δ(n) as the input. Use trigonometric identities to simplify the result as much as you can 2. Draw the diagram showing the implementation of this filter in terms of adders, delays and multipliers Note: The IIR filter above generates a cosinusoidal signal when an impulse signal is applied at its input.] Question...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT