Question

Q1) Consider an LTI system with frequency response (u) given by (a) Find the impulse response h(0) for this system. [Hint: In
0 0
Add a comment Improve this question Transcribed image text
Answer #1

no t ju t& t 3 -Rt 3 Tape yt Ye ut y) 2 Lu 1 /2 Take-Anuun.fawier -tun 一ㄧ

Add a comment
Know the answer?
Add Answer to:
Q1) Consider an LTI system with frequency response (u) given by (a) Find the impulse response h(0) for this system. [Hint: In case of polynomial over pohnomial frequency domain representation, we...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called...

    A continuous-time LTI system has unit impulse response h(t). The Laplace transform of h(t), also called the “transfer function” of the LTI system, is . For each of the following cases, determine the region of convergence (ROC) for H(s) and the corresponding h(t), and determine whether the Fourier transform of h(t) exists. (a) The LTI system is causal but not stable. (b) The LTI system is stable but not causal. (c) The LTI system is neither stable nor causal 8...

  • (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when...

    (e) Consider an LTI system with impulse response h(t) = π8ǐnc(2(t-1). i. (5 pts) Find the frequency response H(jw). Hint: Use the FT properties and pairs tables. ii. (5 pts) Find the output y(t) when the input is (tsin(t) by using the Fourier Transform method. 3. Fourier Transforms: LTI Systems Described by LCCDE (35 pts) (a) Consider a causal (meaning zero initial conditions) LTI system represented by its input-output relationship in the form of a differential equation:-p +3讐+ 2y(t)--r(t). i....

  • 2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) -...

    2.7.5 The impulse response of a continuous-time LTI system is given by h(t) = f(t) - et u(t). (a) What is the frequency response H (w) of this system? (b) Find and sketch H(w). (c) Is this a lowpass, bandpass, or highpass filter, or none of those? 2.7.6 The impulse response of a continuous-time LTI system is given by h(t) = S(t – 2). (This is a delay of 2.) (a) What is the frequency response H (w) of this...

  • Consider an LTI system with the impulse response h(t) = e- . Is the system casual?...

    Consider an LTI system with the impulse response h(t) = e- . Is the system casual? Explain. Find and plot the output s(t) given that the system input is x(t) = u(t). Note that s(t) in this case is commonly known as the step response of the system. If the input is x(t) = u(t)-u(t-T). Express the output y(t) as a function of s(t). Also, explicitly write the output y(t) as a function of t. a) b) c)

  • Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) =...

    Consider the LTI system with input ??(??) = ?? ?????(??) and the impulse response ?(??) = ?? ?2????(??). A. (3 points) Determine ??(??) and ??(??) and the ROCs B. (3 points) Using the convolutional property of the Laplace transform, determine ??(??), the Laplace transform of the output, ??(??) C. (3 points) From the answer of part B, find ??(??) 9 points) Consider the LTI system with input x(t)eu(t) and the impulse response h(t)-e-2u(t) A. 3 points) Determine X(s) and H(s)...

  • 5. (12 points) Consider a continuous-time LTI system whose frequency response is sin(w) H(ju) 4w If...

    5. (12 points) Consider a continuous-time LTI system whose frequency response is sin(w) H(ju) 4w If the input to this system is a periodic signal 0, -4<t<-1 x(t)=1, -1st<1 0, 1st<4 with period T= 8 (a) (2 points) sketch r(t) for -4ts4 (b) (5 points) determine the Fourier series coefficients at of x(t), (c) (5 points) determine the Fourier series coefficients be of the corresponding system output y(t) 5. (12 points) Consider a continuous-time LTI system whose frequency response is...

  • 1- Let's consider an LTI system with an impulse response of where Wo a) Find H(s) and the associa...

    1- Let's consider an LTI system with an impulse response of where Wo a) Find H(s) and the associated H(ja) b) For the cases of μ:0.2, 0.5, 1.0, and 2.0 sketch frequency spectra c) What type of filter can this system represent? d) How does the spectrum HI(jw) change as μ increases? Explain? 2- Consider the following waveform f(t) which is a one cycle of a sinusoid for 0 t π in seconds while zero elsewhere (Aperiodic Signal) fit) 10...

  • a continuous time causal LTI system has a transfer function: H(s)=(s+3)/(s^2 +3s +2) a) find the...

    a continuous time causal LTI system has a transfer function: H(s)=(s+3)/(s^2 +3s +2) a) find the poles and zeros b) indicate the poles and the zeros on the s-plane indicate the region of convergence (ROC) c) write the differential equation of the system. d) determine the gain of the system at dc (ie the transfer function at w=0) e) is the system described by H(s) stable? explain f) for the system described by H(s), does the Fourier transform H(jw) exist?...

  • The unit impulse response and the input to an LTI system are given by: h(t) u(t)...

    The unit impulse response and the input to an LTI system are given by: h(t) u(t) - u(t - 4) x(t) e2[u(t)-u(t - 4)] x(t) 1 y(t) h(t) 1. Determine the output signal, i.e.y(t), you may use any method. 2. Is this system memoryless? Why? 3. Is this system causal? Why? 4. Is this system BIBO stable? Why?

  • Suppose that for the LTI system depicted in the following figure (a), the impulse response and th...

    Suppose that for the LTI system depicted in the following figure (a), the impulse response and the transfer function are given by h(t) = e-tu(t) H(S) = s+1 1 H 100 The input signal x(t) is the square wave of Figure (b), where t is in seconds. Since the fundamental period is To = 2π, the fundamental frequency is ao-2π/L = 1 rad/s and kaa-k. 3t (a) Use the Table provided to find the exponential Fourier series of the signal...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT