Question

Design two digital FIR LPF using Rectangular and Hamming windows, find filter's impulse response coefficients as wel...

Design two digital FIR LPF using Rectangular and Hamming windows, find filter's impulse response coefficients as well as their frequency responses. Filter specifications are: Cut-off frequency (ωp) = 1 radian, Filter Order (M) = 7.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Filter order (H) No ol CoesfiaenN) M+18 o elbeuohere 0 10 268, 0.45015, 0.0G, 17 2. 2T 3 sna) 1 0 062 0.093 BS |-0.06 10.6921

Add a comment
Know the answer?
Add Answer to:
Design two digital FIR LPF using Rectangular and Hamming windows, find filter's impulse response coefficients as wel...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • b) When designing a FIR filters, the impulse response of the ideal low-pass filter is usually modified by multiplying i...

    b) When designing a FIR filters, the impulse response of the ideal low-pass filter is usually modified by multiplying it by a windowing function such as the Hamming window which is defined, for an odd number N of samples, by: (2n)-(N-I)-ns(N-1) N-12 wlnl 0.54 + 0.46 cos i What are the advantages of windowing with this function compared 2 with a standard rectangular window? ii) Design a 10th Order Hamming windowed FIR low-pass filter with cut- off frequency at 1000...

  • (a) The impulse response hfn of an FIR filter satisfies the following property: h[n]- otherwise where...

    (a) The impulse response hfn of an FIR filter satisfies the following property: h[n]- otherwise where M is an even integer. Derive the filter's frequency response and show that it has a linear phase. Why is linear phase a desired property ? (b) You are asked to design a linear-phase FIR filter. The required pass-band is from 1,000 Hz to 3,000 Hz. The input signal's sampling frequency is 16, 000Hz e the pass-band in the w domain 1. GlV n...

  • a) The transfer function of an ideal low-pass filter is and its impulse response is where...

    a) The transfer function of an ideal low-pass filter is and its impulse response is where oc is the cut-off frequency i) Is hLP[n] a finite impulse response (FIR) filter or an infinite impulse response filter (IIR)? Explain your answer ii Is hLP[n] a causal or a non-causal filter? Explain your answer iii) If ae-0. IT, plot the magnitude responses for the following impulse responses b) i) Let the five impulse response samples of a causal FIR filter be given...

  • Design a high pass FIR filter to meet the following specifications. Provide all equations needed to...

    Design a high pass FIR filter to meet the following specifications. Provide all equations needed to produce the filter's impulse response. Pass band: 14.66 - 22 kHz Stop band rejection: min 40 dB Pass band ripple: max. 5% Sampling frquency: 48 kHz Use either a Hamming, Hann or Kaiser window. Derive the first three filter coefficients.

  • 1. Design a 10th-order lowpass FIR filter using the window method (fir1) to cut frequencies above...

    1. Design a 10th-order lowpass FIR filter using the window method (fir1) to cut frequencies above 30Hz in an application where the sampling frequency is 125 Hz. 2. Plot the filter coefficients that define the filter (stem). 3. Plot the frequency response of the FIR filter designed (freqz) 4. Design a 100th-order lowpass FIR filter using the window method (fir1) to cut frequencies above 30Hz in an application where the sampling frequency is 125 Hz. Plot the filter coefficients that...

  • 0.09 Rect Bartlett Hann 21 26 0.0063 44 amming0.0022 53 74 M+1 M1 +1 M+1 0.05 12π ckman0.0002 Figure 2: The characteristics of the window types. . FIR filter design Using the windowing method, design...

    0.09 Rect Bartlett Hann 21 26 0.0063 44 amming0.0022 53 74 M+1 M1 +1 M+1 0.05 12π ckman0.0002 Figure 2: The characteristics of the window types. . FIR filter design Using the windowing method, design a causal linear-phase DT lowpass FIR filter with no more than 1 dB passband ripple at 16kHz, at least 50dB of attenuation at 20kHz, sampling rate of 400 kHz. Choose one of the windows in the table in Fig. 2. Select an even filter order...

  • Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer func...

    Thanks Question 3 a) A linear-phase, Finite Impulse Response (FIR) digital filter with the transfer function H() shown as follow is desired: (4 marks) (3 marks) iii) Based on (a)(ii), determine the truncated impulse response ha(n) for a 5-tap FIR filter by i) Sketch the spectrum of the transfer function H (w). ii) Determine the impulse response h(n) from H() using rectangular window method. (6 marks) iv) Calculate all the filter coefficient of ha (n). (5 marks) Question 3 a)...

  • 1. Find the length of the lowpass FIR filter corresponding to the following specifications: wp- 0...

    1. Find the length of the lowpass FIR filter corresponding to the following specifications: wp- 0.3m ωs-0.4m, δp-0.01, and δ,-0.005. Use Kaiser's formula 4. Consider the design of a windowed FIR lowpass filter corresponding to the specifications given in problem #1. Determine its length if Hann, Hamming, and Blackman windows are used. Hint: refer to Equation 10.36 and Table 10.2 of the textbook. 5. With reference to the specifications in problem #1, consider the design of an FIR lowpass filter...

  • QUESTION 6 Зро Design a second-order IIR digital low-pass filter using Butterworth approximation....

    QUESTION 6 Зро Design a second-order IIR digital low-pass filter using Butterworth approximation. Use the bilinear transformation to convert the analogue fiter to a digital one (choose the sampling period T- 2 s and the cut-off frequency as 1 rad/'s). Express the digital transfer function of the filter H(z) as: In the box below, provide the numerical answer for b1. [Note: Don't normalise the transfer func on, i.e. b0 # 1). r98111acontentid1837836_1&step QUESTION 7 Windowing based FIR filter design techniques...

  • 3. Design a bandpass FIR filter using Kaiser's formula for filter order, using Hamming window with...

    3. Design a bandpass FIR filter using Kaiser's formula for filter order, using Hamming window with the following specifications: the lower passband and stopband edge frequencies are fpi- 700 Hz, fs1 - 300 Hz, the upper passband and stopband edge frequencies fp2 - 2 kHz fs2 - 2400 Hz, the sampling frequency fs-10 kHz, and 6p-0.03, ando0.004.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT