Question

CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The react...

CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The reaction that occurs is

CaO(s)+H2O(l)⇌Ca(OH)2(s)

The product is commonly called slaked lime.

Assuming the commonly used standard-state temperature of 25∘C, calculate ΔSuniv for this reaction using table from the table below.

Substance S
[J/(K⋅mol)]
ΔH∘f
(kJ/mol)
CaO(s) 39.9 −635.1
H2O(l) 69.9 −285.8
Ca(OH)2(s) 83.4 −986.1
1 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The reaction is as follows:

CaO(s)+ H2O(Ca(OH), (s)

Calculate the entropy change of the universe by using the following formula.

ΔSUniverse=ΔSSystem+ΔSSurroundings\Delta {S_{{\rm{Universe}}}} = {\rm{ }}\Delta {S_{{\rm{System}}}} + \Delta {S_{{\rm{Surroundings}}}}

Calculate the ΔSSurroundings\Delta {S_{{\rm{Surroundings}}}} as shown below.

ΔSSurroundings=ΔHorxnT\Delta {S_{{\rm{Surroundings}}}} = - \frac{{\Delta {H^{\rm{o}}}_{{\rm{rxn}}}}}{T}

Here, ΔHorxn\Delta {H^{\rm{o}}}_{{\rm{rxn}}} is enthalpy change of the reaction, T is temperature.

Calculate the entropy change for the reaction (system) by using the following formula.

ΔSoreaction=npSof(products)nrSof(reactants)\Delta {S^{\rm{o}}}_{{\rm{reaction}}} = {\rm{ }}\sum {n_p}{S^{\rm{o}}}_{\rm{f}}{\rm{(products)}} - \sum {n_r}{S^{\rm{o}}}_{\rm{f}}{\rm{(reactants)}}

Change of enthalpy during the formation of substance from its constituent elements is called as enthalpy of formation.

Calculate the enthalpy change for the reaction by using the following formula.

ΔHoreaction=npΔHof(products)nrΔHof(reactants)\Delta {H^{\rm{o}}}_{{\rm{reaction}}} = {\rm{ }}\sum {n_p}\Delta {H^{\rm{o}}}_{\rm{f}}{\rm{(products)}} - \sum {n_r}\Delta {H^{\rm{o}}}_{\rm{f}}{\rm{(reactants)}}

Fundamentals

Entropy is a thermodynamic quantity, it is a measure of randomness of a system.

Change in the enthalpy when one mole of a substance is formed from its pure elements under standard conditions is called as standard enthalpy of formation. The standard conditions are 1atm pressure and 298 K temperature.

Write the expansion of enthalpy formation for the chemical equation as shown below.

ΔSorxn=[nCa(OH)2(s)×SofCa(OH)2(s)][nCaO(s)×SofCaO(s)+nH2O(l)×SofH2O(l)]ΔSorxn=[1mol×83.4JKmol][(1mol×39.9JKmol)+(1mol×69.9JKmol)]\begin{array}{c}\\\Delta {S^{\rm{o}}}_{{\rm{rxn}}} = \left[ {{n_{{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}\left( {\rm{s}} \right)}} \times {S^{\rm{o}}}_{\rm{f}}{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}\left( {\rm{s}} \right)} \right] - \left[ {{n_{{\rm{CaO}}\left( {\rm{s}} \right)}} \times {S^{\rm{o}}}_{\rm{f}}{\rm{CaO}}\left( {\rm{s}} \right) + {n_{{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)}} \times {S^{\rm{o}}}_{\rm{f}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)} \right]\\\\\Delta {S^{\rm{o}}}_{{\rm{rxn}}} = \left[ {1{\rm{ mol}} \times 83.4{\rm{ }}\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}} \right] - \left[ {\left( {1{\rm{ mol}} \times 39.9{\rm{ }}\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}} \right) + \left( {{\rm{1 mol}} \times {\rm{69}}{\rm{.9 }}\frac{{\rm{J}}}{{{\rm{K}} \cdot {\rm{mol}}}}} \right)} \right]\\\end{array}

ΔSorxn=[1mol×83.4JKmol][(1mol×39.9JKmol)+(1mol×69.9JKmol)]ΔSorxn=83.4JK[39.9JK+69.9JK]ΔSorxn=26.4JK\begin{array}{c}\\\Delta {S^{\rm{o}}}_{{\rm{rxn}}} = \left[ {1{\rm{ }}\cancel{{{\rm{mol}}}} \times 83.4{\rm{ }}\frac{{\rm{J}}}{{{\rm{K}} \cdot \cancel{{{\rm{mol}}}}}}} \right] - \left[ {\left( {1{\rm{ }}\cancel{{{\rm{mol}}}} \times 39.9{\rm{ }}\frac{{\rm{J}}}{{{\rm{K}} \cdot \cancel{{{\rm{mol}}}}}}} \right) + \left( {{\rm{1 }}\cancel{{{\rm{mol}}}} \times {\rm{69}}{\rm{.9 }}\frac{{\rm{J}}}{{{\rm{K}} \cdot \cancel{{{\rm{mol}}}}}}} \right)} \right]\\\\\Delta {S^{\rm{o}}}_{{\rm{rxn}}} = 83.4{\rm{ }}\frac{{\rm{J}}}{{\rm{K}}} - \left[ {39.9{\rm{ }}\frac{{\rm{J}}}{{\rm{K}}} + 69.9{\rm{ }}\frac{{\rm{J}}}{{\rm{K}}}} \right]\\\\\Delta {S^{\rm{o}}}_{{\rm{rxn}}} = - {\rm{26}}{\rm{.4 }}\frac{{\rm{J}}}{{\rm{K}}}\\\end{array}

Thus, ΔSSystem\Delta {S_{{\rm{System}}}} of the reaction is 26.4JK - {\rm{26}}{\rm{.4 }}\frac{{\rm{J}}}{{\rm{K}}} .

Calculate the enthalpy change for reaction as shown below.

ΔHorxn=[nCa(OH)2(s)×ΔHofCa(OH)2(s)][nCaO(s)×ΔHofCaO(s)+nH2O(l)×ΔHofH2O(l)]ΔHorxn=1mol×(986.1kJmol)[1mol×(635.1kJmol)+1mol×(285.8kJmol)]\begin{array}{c}\\\Delta {H^{\rm{o}}}_{{\rm{rxn}}} = {\rm{ }}\left[ {{n_{{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}\left( {\rm{s}} \right)}} \times \Delta {H^{\rm{o}}}_{\rm{f}}{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}\left( {\rm{s}} \right)} \right] - \left[ {{n_{{\rm{CaO}}\left( {\rm{s}} \right)}} \times \Delta {H^{\rm{o}}}_{\rm{f}}{\rm{CaO}}\left( {\rm{s}} \right) + {n_{{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)}} \times \Delta {H^{\rm{o}}}_{\rm{f}}{{\rm{H}}_{\rm{2}}}{\rm{O}}\left( {\rm{l}} \right)} \right]\\\\\Delta {H^{\rm{o}}}_{{\rm{rxn}}} = 1{\rm{ mol}} \times \left( { - 986.1{\rm{ }}\frac{{{\rm{kJ}}}}{{{\rm{mol}}}}} \right) - \left[ {1{\rm{ mol}} \times \left( { - 635.1{\rm{ }}\frac{{{\rm{kJ}}}}{{{\rm{mol}}}}} \right) + 1{\rm{ mol}} \times \left( { - {\rm{285}}{\rm{.8 }}\frac{{{\rm{kJ}}}}{{{\rm{mol}}}}} \right)} \right]\\\end{array} ΔHorxn=1mol×(986.1kJmol)[1mol×(635.1kJmol)+1mol×(285.8kJmol)]ΔHorxn=986.1kJ[635.1kJ285.8kJ]ΔHorxn=65.2kJ\begin{array}{c}\\\Delta {H^{\rm{o}}}_{{\rm{rxn}}} = 1{\rm{ }}\cancel{{{\rm{mol}}}} \times \left( { - 986.1{\rm{ }}\frac{{{\rm{kJ}}}}{{\cancel{{{\rm{mol}}}}}}} \right) - \left[ {1{\rm{ }}\cancel{{{\rm{mol}}}} \times \left( { - 635.1{\rm{ }}\frac{{{\rm{kJ}}}}{{\cancel{{{\rm{mol}}}}}}} \right) + 1{\rm{ }}\cancel{{{\rm{mol}}}} \times \left( { - {\rm{285}}{\rm{.8 }}\frac{{{\rm{kJ}}}}{{\cancel{{{\rm{mol}}}}}}} \right)} \right]\\\\\Delta {H^{\rm{o}}}_{{\rm{rxn}}} = - 986.1{\rm{ kJ}} - \left[ { - 635.1{\rm{ kJ}} - {\rm{285}}{\rm{.8 kJ}}} \right]\\\\\Delta {H^{\rm{o}}}_{{\rm{rxn}}} = - {\rm{65}}{\rm{.2 kJ}}\\\end{array}

And

ΔSSurroundings=ΔHorxnTΔSSurroundings=(65.2kJ)(25+273.15)KΔSSurroundings=(65.2kJ)298.15KΔSSurroundings=0.21868kJK\begin{array}{l}\\\Delta {S_{{\rm{Surroundings}}}} = - \frac{{\Delta {H^{\rm{o}}}_{{\rm{rxn}}}}}{T}\\\\\Delta {S_{{\rm{Surroundings}}}} = - \frac{{\left( { - {\rm{65}}{\rm{.2 kJ}}} \right)}}{{\left( {25 + 273.15} \right){\rm{ K}}}}\\\\\Delta {S_{{\rm{Surroundings}}}} = - \frac{{\left( { - {\rm{65}}{\rm{.2 kJ}}} \right)}}{{298.15{\rm{ K}}}}\\\\\Delta {S_{{\rm{Surroundings}}}} = 0.21868\frac{{{\rm{kJ}}}}{{\rm{K}}}\\\end{array}

The unit conversion is as follows:

1kJ=1000J1{\rm{ kJ}} = 1000{\rm{ J}}

ΔSSurroundings=0.21868kJK×1000J1kJΔSSurroundings=218.68JK\begin{array}{l}\\\Delta {S_{{\rm{Surroundings}}}} = 0.21868\frac{{\cancel{{{\rm{kJ}}}}}}{{\rm{K}}} \times \frac{{1000{\rm{ J}}}}{{1{\rm{ }}\cancel{{{\rm{kJ}}}}}}\\\\\Delta {S_{{\rm{Surroundings}}}} = 218.68\frac{{\rm{J}}}{{\rm{K}}}\\\end{array}

Calculate the value of ΔSUniverse\Delta {S_{{\rm{Universe}}}} as shown below.

ΔSUniverse=ΔSSystem+ΔSSurroundings=26.4JK+218.68JK=192.28JK\begin{array}{c}\\\Delta {S_{{\rm{Universe}}}} = {\rm{ }}\Delta {S_{{\rm{System}}}} + \Delta {S_{{\rm{Surroundings}}}}\\\\ = - 26.4{\rm{ }}\frac{{\rm{J}}}{{\rm{K}}}{\rm{ + 218}}{\rm{.68 }}\frac{{\rm{J}}}{{\rm{K}}}\\\\{\rm{ = 192}}{\rm{.28 }}\frac{{\rm{J}}}{{\rm{K}}}\\\end{array}

Thus, the value of ΔSUniverse\Delta {S_{{\rm{Universe}}}} is 192.28JK{\rm{192}}{\rm{.28 }}\frac{{\rm{J}}}{{\rm{K}}} .

Ans:

The value of ΔSUniverse\Delta {S_{{\rm{Universe}}}} for the reaction is 192.28JK{\rm{192}}{\rm{.28 }}\frac{{\rm{J}}}{{\rm{K}}} .

Add a comment
Know the answer?
Add Answer to:
CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The react...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The react...

    CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The reaction that occurs is CaO(s)+H2O(l)⇌Ca(OH)2(s) The product is commonly called slaked lime. Assuming ambient standard temperature of 298.15 K, calculate ΔStotal for this reaction using table from the table below. Substance S∘ [J/(K⋅mol)] ΔH∘f (kJ/mol) CaO(s) 39.9 −635.1 H2O(l) 69.9 −285.8 Ca(OH)2(s) 83.4 −986.1

  • Part A CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. T...

    Part A CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The reaction that occurs is CaO(s)+H2O(l)⇌Ca(OH)2(s) The product is commonly called slaked lime. Assuming the commonly used standard-state temperature of 25∘C, calculate ΔSuniv for this reaction using table from the table below. Substance S∘ [J/(K⋅mol)] ΔH∘f (kJ/mol) CaO(s) 39.9 −635.1 H2O(l) 69.9 −285.8 Ca(OH)2(s) 83.4 −986.1 Express your answer to three significant figures and include the appropriate...

  • Part A CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. T...

    Part A CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The reaction that occurs is CaO(s)+H2O(l)⇌Ca(OH)2(s) The product is commonly called slaked lime. Assuming the commonly used standard-state temperature of 25∘C, calculate ΔSuniv for this reaction using the data from the table below. Substance S∘ [J K−1 mol−1] ΔfH∘ (kJ mol−1) CaO(s) 39.9 −635.1 H2O(l) 69.9 −285.8 Ca(OH)2(s) 83.4 −986.1 Part B A particular solvent with ΔvapS∘=112.9J...

  • PART 2 Q1(10 pts.) CaO can be used as a drying agent. One such application occurs...

    PART 2 Q1(10 pts.) CaO can be used as a drying agent. One such application occurs when water is added to dry concrete or cement. The reaction that occurs is: Cam(s) +H2O(1) = Ca(OH)2(s) The product is commonly known as slaked lime. Using the table below at 25°C, calculate the entropy of the universe. Is this an spontaneous process? Explain sº AH Substance [J/(K·mol)] (kJ/mol) | CaO(s) | 39.9 -635.1 H2O(1) 69.9 -285.8 Ca(OH)2 (s) 83.4 83.4 -986.1

  • Part A Determine the enthalpy for this reaction: Ca(OH)2(s)+CO2(g)→CaCO3(s)+H2O(l) Express your answer in kilojoules...

    Part A Determine the enthalpy for this reaction: Ca(OH)2(s)+CO2(g)→CaCO3(s)+H2O(l) Express your answer in kilojoules per mole to one decimal place. ΔHrxn∘= kJ/mol Part B Consider the reaction Ca(OH)2(s)→CaO(s)+H2O(l) with enthalpy of reaction ΔHrxn∘=65.2kJ/mol What is the enthalpy of formation of CaO(s)? Express your answer in kilojoules per mole to one decimal place. ± Enthalpy Enthalpy H is a measure of the energy content of a system at constant pressure. Chemical reactions involve changes in enthalpy, ΔH, which can be measured...

  • help with this please Ca(OH)2(aq) + 2 HCl(aq) +CaCl2(8) + 2 H2O(1) Using the standard thermodynamic...

    help with this please Ca(OH)2(aq) + 2 HCl(aq) +CaCl2(8) + 2 H2O(1) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K ANSWER: N2(g) + O2(g) +2NO(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K ANSWER: 2CO(g) + O2(g) +2002(9) - der e en manos de 20, ali ne more than one so mi dicogna undan Using standard thermodynamic data...

  • Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also...

    Using enthalpies of formation (Appendix C), calculate ΔH ° for the following reaction at 25°C. Also calculate ΔS ° for this reaction from standard entropies at 25°C. Use these values to calculate ΔG ° for the reaction at this temperature. COCl2(g) + H2O(l ) h CO2(g) + 2HCl(g). Appendix C Thermodynamic Quantities for Substances and Ions at 25°C Substance or lon AH; (kW/mol) 0 AG: (kJ/mol) 0 S° (J/mol-K) 20.87 ΔΗ, (kJ/mol) -946.3 - 33422 AG; {kj/mol) --859,3 -2793 (J/mol-K)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT