Question

3. Masses mi and m2 in the system on the back of the page have masses of 12.0 kg and 4.0 kg respectively. The pulley and rope

Masses m1 and m2 in the system on the back of the page have masses 12.0 kg and 4.0 kg respectively. The pulley and rope are massless and frictionless. The two boxes are released from rest.

I only need help for (a)
omit (b), (c), and (d)
thanks!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution - From the Con Aervatton cener v2 m29 oR m h (12.0+ 410) 2 j9.6 0.o v 2 v2 19.6 oR V S65

Add a comment
Know the answer?
Add Answer to:
Masses m1 and m2 in the system on the back of the page have masses 12.0 kg and 4.0 kg respectively. The pulley and r...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Objects with masses m1 = 12.0 kg and m2 = 7.0 kg are connected by a...

    Objects with masses m1 = 12.0 kg and m2 = 7.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.80 s, determine the coefficient of kinetic friction between mi and the table Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the net...

  • Two masses are connected on a frictionless pulley. M1 = 9 kg sits on a frictionless...

    Two masses are connected on a frictionless pulley. M1 = 9 kg sits on a frictionless horizontal surface and is connected to a spring with a spring constant of k = 250 N/m. M2 = 6kg and hangs off the edge of the surface. Initially, both masses are at rest and the spring is at its equilibrium. After the blocks are released, how fast will they be moving when mass 2 falls .1 m?

  • an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720...

    an atwood machine with massless string and frictionless pulley has masses m1= 0.480 kg and m2=0.720 kg attached to it. derive the equations for and calculate the acceleration of the masses and the tension in the string

  • Two blocks with different masses m1 and m2 and m1 is larger than m2. They are...

    Two blocks with different masses m1 and m2 and m1 is larger than m2. They are attached to either end of a light rope that passes over a light, frictionless pulley suspended from the ceiling. The mass are released from rest, and the more massive one starts to descend. After this block has descended 1.6 m, its speed is 2.2 ms-1. If the total mass is 4.1 kg, what is the mass of the heavier block m1 (unit is kg)?...

  • Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by...

    Two blocks m1 and m2 with masses 50 kg and 100 kg respectively are connected by a string over a pulley that is frictionless with negligible mass. The 50 kg block slides on a 37 degree incline that has a coefficient of kinetic friction of 0.25. This block is also attached to a wall at the base of the incline by an ideal spring that has a spring coefficient of 100 N/m. The system is released from rest with a...

  • Boxes A and B in (Figure 1) have masses of 13.8 kg and 4.9 kg ,...

    Boxes A and B in (Figure 1) have masses of 13.8 kg and 4.9 kg , respectively. The two boxes are released from rest. Part A What would be the speed of the boxes when box B has fallen a distance of 0.50 m? The coefficient of kinetic friction between box A and the surface it slides on is 0.20. Use conservation of energy.

  • 13. Notes O Ask Your Three objects with masses m-4.6 kg, m2 14 kg, and m...

    13. Notes O Ask Your Three objects with masses m-4.6 kg, m2 14 kg, and m - 16 kg, respectively, are attached by strings over frictionless pulleys as Indicated in the figure below. The hortzontal surface exerts a force of friction of 30 N on my If the system is released from rest, use energy concepts to find the speed of m, after it moves down 4.0 m. m/s Need Help? show My Work(Optional,@

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction ulk = 0.15. The incline is at the angle o...

  • Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are...

    Problem #1 m1 m2 Two blocks mı = 4 kg and m2 = 9 kg are initially arranged as shown in the figure. They are tied to a massless rope going around the pulley. The pulley has a form of a cylinder with a mass of M = 8 kg and radius of R = 40 cm. Both the incline and the horizontal surface have a coefficient of kinetic friction x = 0.15. The incline is at the angle =...

  • 1 Consider the following system of two blocks connected by a massless rope. The surface that...

    1 Consider the following system of two blocks connected by a massless rope. The surface that block 2 slides on is frictionless. The pulley is massless and frictionless and the two blocks above are released from rest at the points shown M=8,00 kg 35.00 1 = 12.000 kg 3.200 m Use conservation of energy to find the speed of object 1 when it strikes the ground. Clearly indicate your zeros for the gravitational potential energy of each object on the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT