Question

Weekly Comprehensive Assign Weekly Comprehensive Assign + x app.varafy.com/Iti/v1p1?custom_assignment_revision_resource_id= 5

Radiation of Energy 

The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation: = aeAT4 where o 5.67x10-8 J/s - m2 K is the Stefan-Boltzmann constant, A is the surface area of the object, and T is its absolute temperature in kelvin. The symbol e stands for the emissivity of the object, which is a measure of how well it radiates An ideal jet-black (or black body) radiator has e 1,whereas a perfect reflector has e 0. Real objects fall between these two values. Take, for example, tungsten light bulb filaments which have an e of about 0.5, and carbon black (a material used in printer toner), which has the (greatest known) emissivity of about 0.99 If an object is surrounded by an environment with uniform temperature T the object absorbs energy from the encironment. The rate of heat transfer by absorbed radiation is: geATSar Absorb Radinte Inciddent radiant energy Emitted Reflected Retained Absorbed Black Black Incident iant eneroy Reflected Emittod Retaineed Absorbmd Silver coated Silver oated A person with a surface area of 1.20 m2, and a skin temperature of 27 °C, is in a room that is at a temperature of 16.6 °C. The emissivity of the skin is 0.895. The Stefan-Boltzmann constant is 5.67 x 108 W/(m2-K4). 

(a) How much power (power is the energy per second) is radiated by the person? 

(b) How much power is absorbed by the person from the surroundings?

(c) What is his NET Power loss? Report as a Positive value.

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

@) power radiated by the penson Ppersona re Ats 5.67 x10°x 0. 895 X 1.2x13003 492.48 watt penson = 6.08 X 10 X 8 loooooo00o

Add a comment
Know the answer?
Add Answer to:
How much power (power is the energy per second) is radiated by the person
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation...

    The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation = ceAT4 t where a 5.67x108 J/(s m2. K4) is the Stefan-Boltzmann constant, A is the surface area of the object, and T is its absolute temperature in kelvin. The symbol e stands for the emissivity of the object, which is a measure of how well it radiates. An ideal jet-black (or black body) radiator has e 1, whereas a perfect reflector has e...

  • Absorb Incident radiant onorgy Reflected Emitted Absorbed Retained Black Black Incident radiant energy Reflected Emitte Retained...

    Absorb Incident radiant onorgy Reflected Emitted Absorbed Retained Black Black Incident radiant energy Reflected Emitte Retained Absorbed Silver coated Silver coated A person with a surface area of 1.20 m2, and a skin temperature of 27 °C, is in a room that is at a temperature of 17.6 °C. The emissivity of the skin is 0.895, The Stefan-Boltzmann constant is 5.67 x 10-8 W/(m2K). (a) How much energy is radiated by the person in 1 minute? Keep 2 decimal places....

  • In this problem you will consider the balance of thermal energy radiated and absorbed by a...

    In this problem you will consider the balance of thermal energy radiated and absorbed by a person. Assume that the person is wearing only a skimpy bathing suit of negligible area. As a rough approximation, the area of a human body may be considered to be that of the sides of a cylinder of length L=2.0m and circumference C=0.8m. For the Stefan-Boltzmann constant use σ=5.67×10−8W/m2/K4. Part A If the surface temperature of the skin is taken to be T_body=30∘C, how...

  • In this problem you will consider the balance of thermal energy radiated and absorbed by a...

    In this problem you will consider the balance of thermal energy radiated and absorbed by a person in a room. The rate of heat transfer from radiation is: ΔQΔt=eσA(T42−T41)=eσAT42−eσAT41. This equation has two terms which represent the rate of absorption from the room (a gain) and the rate of radiation into the room (a loss). In this problem, we will consider these two terms separately. Assume that the area of a human body may be considered to be that of...

  • The energy radiated per unit surface area (across all wavelengths) for a black body with temperature...

    The energy radiated per unit surface area (across all wavelengths) for a black body with temperature 2200. Use 5.67 x 10-8 for the Stefan-Boltzmann constant. The Stefan-Boltzmann Law describes the power radiated from a black body in terms of its temperature. Specifically, the total energy radiated per unit surface area of a black body across all wavelengths per unit time is proportional to the fourth power of the black body's thermodynamic temperature

  • Radiation heat transfer: Two perfectly black surfaces (each with emissivity ε = 1.0) are constructed such...

    Radiation heat transfer: Two perfectly black surfaces (each with emissivity ε = 1.0) are constructed such that all the radiant energy leaving a surface at 800 °C (1073 K) reaches the other surface. The temperature of the other surface, with area A = 2 m2, is maintained at 250 °C (523 K). Using the formula Q = ε σ A (THot4 – TCold4) calculate the heat transfer (in kW) of the surface maintained at 800 °C. The Stefan-Boltzmann constant, σ...

  • 2. The average person has 1.4 m2 of skin at a skin temperature of roughly 305...

    2. The average person has 1.4 m2 of skin at a skin temperature of roughly 305 K (90°F) Consider the average person to be an ideal radiator standing in a room at a temperature of 293 K (68°F) (a) Calculate the power (energy per uni i) radiated by the average person in the form of blackbody radiation; express your answer in erg s-1. What is the person's "wattage"? (1 W = 107 erg s-1) Compare this to a typical incandescent...

  • Moving to another question wil save this response. Question 7 Consider a person standing in a...

    Moving to another question wil save this response. Question 7 Consider a person standing in a room at 25'C. Determine the total rate of heat transfer from this person if the exposed surface area and the average outer surface temperature of the person are 1.6 m2 and 30 C respectively, and the convection heat transfer coefficient is 12 W/m2"C. Stefan Boltzmann coefficient is 5.67E-8 and emissivity is 0.95 O 142.77 W O 268.1 W 168.1 w 154.5 W 。2545 w...

  • The hot glowing surfaces of stars emit energy in the form ofelectromagnetic radiation. It is...

    The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume that the emissivity e is equal to 1 for these surfaces.Part AFind the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7×10^31 W and has a surface temperature of 11,000 K. Assume that the star is spherical.Use σ=5.67×10^−8 W/m2⋅K4 for the Stefan-Boltzmann constant and express your...

  • The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is...

    The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume that the Emissivity e is equal to 1 for these surfaces. Find the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7 x 1031 W and has a surface temperature of 11,000 K. Assume that the star is spherical Use σ = 5.67 × 10-8 w/m2-K4...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT