Question

Some types of molecules that do not possess an intrinsic electric dipole moment can be given one by an external electric field in a process called charge separation, or polarization. In this process, their internal charge distribution becomes distorted by the field, which results in the region of a molecule on the side in the direction of the field gaining a positive net charge and the region on the other side gaining a negative net charge. Both charges have equal magnitudes, and the electric neutrality of the molecule as a whole is maintained. The electric field is said to induce an electric dipole moment in such a molecule. When the field is canceled, the molecule reverts to its unpolarized state and loses its electric dipole moment. The electric behavior of such a molecule can be modeled by a pair of ±1.60 x 10-19 C charges connected by a spring with force constant 0.000253 N/m. The spring must be imagined as possessing zero relaxed length so that normally the charges overlap and the molecule has zero dipole moment. In the presence of an electric field, however, the positive charge is pulled in the direction of the field, and the negative charge is pulled in the opposite direction. This charge separation endows the molecule with an electric dipole moment. Find the charge separation distance in an electric field of 5.07 × 105 N/C. charge separation distance:| 8.112 x10 What is the magnitude of the induced electric dipole moment? 32 electric dipole moment: 1.29792 ×10

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

The force on a charge from the dipole in the electric field can be calculated using

F = E= 1.6 x 10-19 x 5.07 x 105 = 8.112 x 10-14 N

At equilibrium, the tension in the spring balances this force. So, the spring force is

F = kr = 8.112 x 10-14 N

> C= 8.112 x 10-14 n -= 3.2 x 10-10 m 0.000253 N/m

So, the charge separation distance is 3.2 x 10-10 m.

The dipole moment is given by

p=qd = 1.6 x 10-19 X 3.2 x 10-10 = 5.12 x 10-29 C.m

So, the dipole moment is 5.12 x 10-29 C.m.

Add a comment
Know the answer?
Add Answer to:
Some types of molecules that do not possess an intrinsic electric dipole moment can be given...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Some types of molecules that do not possess an intrinsic electric dipole moment can be given...

    Some types of molecules that do not possess an intrinsic electric dipole moment can be given one by an external electric field in a process called charge separation, or polarization. In this process their internal charge distribution becomes distorted by the field, with the result that the region of a molecule on the side in the direction of the field gains a positive net charge, while the region on the other side gains a negative net charge. Both charges have...

  • Some types of molecules that do not possess an intrinsic electric dipole moment can be given...

    Some types of molecules that do not possess an intrinsic electric dipole moment can be given one by an external electric field in a process called charge separation, or polarization. In this process their internal charge distribution becomes distorted by the field, with the result that the region of a molecule on the side in the direction of the field gains a positive net charge, while the region on the other side gains a negative net charge. Both charges have...

  • in the direction of the field gains a positive net charge, while the region on the...

    in the direction of the field gains a positive net charge, while the region on the other side gains a negative net charge. Both charges have equal magnitudes and the electric neutrality of the molecule as a whole is maintained. The electric field is said to induce an electric dipole moment in such a molecule. When the spring with force constant 3.99 x 104 N/m. The spring must be imagined as possessing zero relaxed length 8 Find the charge separation...

  • Question 8 of 10 > A particular organic molecule forms an electric dipole by possessing an...

    Question 8 of 10 > A particular organic molecule forms an electric dipole by possessing an effective charge separation of 0.173 nm for a pair of +1.60 x 10 C charges. What is the magnitude of the molecule's electric dipole moment? electric dipole moment: Find the magnitude of the torque that acts on the molecule when it is immersed in a uniform electric field of 1.67 x 10 N/C with its electric dipole vector at an angle of 58.1" from...

  • An electric field can induce an electric dipole in a neutral molecule (or atom) by pushing...

    An electric field can induce an electric dipole in a neutral molecule (or atom) by pushing the positive and negative charges inside the molecule in opposite directions. The dipole moment of the induced dipole is directly proportional to the electric field at the molecule. That is, p⃗ =αE⃗ , where  p⃗   is the induced dipole moment, α is called the polarizability of the molecule, and  E⃗  is the electric field at the molecule. A stronger electric field at the molecule results in a...

  • A particular organic molecule forms an electric dipole by possessing an effective charge separation of 0.193...

    A particular organic molecule forms an electric dipole by possessing an effective charge separation of 0.193 nm for a pair of +1.60 x 1019-C charges. What is the magnitude of the molecule's electric dipole moment? Number C m Find the magnitude of the torque that acts on the molecule when it is immersed in a uniform electric field of 3.77 x105 N/C with its electric dipole vector at an angle of 58.5° from the direction of the field. Number N....

  • An electric field can induce an electric dipole in a neutral molecule (or atom) by pushing...

    An electric field can induce an electric dipole in a neutral molecule (or atom) by pushing the positive and negative charges inside the molecule in opposite directions. The dipole moment of the induced dipole is directly proportional to the electric field at the molecule. That is, p⃗ =αE⃗ , where  p⃗   is the induced dipole moment, α is called the polarizability of the molecule, and  E⃗  is the electric field at the molecule. A stronger electric field at the molecule results in a...

  • 2. Show that the electric field of a dipole on its axis points in the direction...

    2. Show that the electric field of a dipole on its axis points in the direction of dipole moment and on the transverse axis in direction opposite to that of the dipole moment. Further, show that electric field varies inversely as the cube of the distance: assume that the distance of point under consideration is much larger than the separation of charges of a dipole.

  • The dipole moment of the water molecule (H2O) is 6.17×10−30C⋅m. Consider a water molecule located at...

    The dipole moment of the water molecule (H2O) is 6.17×10−30C⋅m. Consider a water molecule located at the origin whose dipole moment p⃗ points in the +x-direction. A chlorine ion (Cl−), of charge −1.60×10−19C, is located at x=3.00×10−9m. Assume that x is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis can be used. Find the magnitude of the electric force that the water molecule...

  • The dipole moment of the water molecule (H2O)is 6.17 x 10-30 C- m. Consider a water...

    The dipole moment of the water molecule (H2O)is 6.17 x 10-30 C- m. Consider a water molecule located at the origin whose dipole moment p points in the +X-direction. A chlorine ion (Cl), of charge 1.60 x 10-19 C, is located at 3.00 x 10-9m. Assume that ac is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis can be used. Find the magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT