Question

A sine wave is traveling along a string. The time for a particular point to move from maximum displacement to zero is 0.540 s. What is the period? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 The wavelength is 1.20 m; what is the wave speed? Submit Answer Tries 0/99

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A sine wave is traveling along a string. The time for a particular point to move...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equation of a transverse wave traveling on a string is given by y - A...

    The equation of a transverse wave traveling on a string is given by y - A sin(kx - ot) Data: A-22 mm, k-13 rad/m, 240 rad/s. What is the amplitude? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 What is the wave velocity? Submit Answer Tries 0/99 What is the wavelength? Submit Answer Tries 0/99 For the same wave, find the maximum transverse speed of a particle in the string. Submit Answer Tries 0/99

  • The equation of a transverse wave traveling on a string is given by y A sin(kx...

    The equation of a transverse wave traveling on a string is given by y A sin(kx - cot). Data: A-22 mm, k-13 rad/m, - 240 rad/s. What is the amplitude? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 What is the wave velocity? Submit Answer Tries 0/99 What is the wavelen Submit Answer Tries 0/99 For the same wave, find the maximum transverse speed of a particle in the string. Submit Answer Tries 0/99

  • A sinusoidal transverse wave is traveling along a string in the negative direction of an x...

    A sinusoidal transverse wave is traveling along a string in the negative direction of an x axis. The figure below shows a plot of the displacement as a function of position at time t = 0. The x axis is marked in increments of 10 cm and the y axis is marked in increments of 2 cm. The string tension is 3.1 N, and its linear density is 34 g/m. (a) Find the amplitude. m (b) Find the wavelength. m...

  • The equation of a transverse wave traveling in a string is given by y = A...

    The equation of a transverse wave traveling in a string is given by y = A sin(kx-at). The tension in the string is 18.0 N, A What is the wave speed? 1 mm, k = 26 rad/m, ω 745 rad/s Submit Answer Tries 0/99 What is the linear density of the string. Submit Answer Tries 0/99

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • Wave function You are observing a wave traveling along the x-axis. The first picture (y vs....

    Wave function You are observing a wave traveling along the x-axis. The first picture (y vs. x) shows a snapshot of the wave at t=0. The second picture dy vs. t) shows how the wave height varies in time from the perspective of an observer standing at fixed location x-0. From this information, determine if the wave is traveling to the left or right. Give a one-sentence explanation justifying your answer 2) 3) The wave function for a harmonic (i.e.,...

  • Wave on a String A string with linear mass density 2.0 g/m is stretched along the...

    Wave on a String A string with linear mass density 2.0 g/m is stretched along the positive x-axis under a tension of 20 N. The other end of the string, at x = 0m is tied to a hook that oscillates up and down at a frequency of 100Hz with a maximum displacement from equilibrium of 1.0 mm. At t= 0s, the hook is at it's lowest point. (a) What are the wave speed and the wavelength on the string?...

  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • The equation of a transverse wave traveling along a very long string is y = 6.28...

    The equation of a transverse wave traveling along a very long string is y = 6.28 sin(0.0223πx+ 3.63πt), where x and yare expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 4.95 cm when t = 0.876 s?

  • The equation of a transverse wave traveling in a string is given by y-A sin(kx-at). The...

    The equation of a transverse wave traveling in a string is given by y-A sin(kx-at). The tension in the string is 18.0 N, A-1 mm, k = 26 rad/m, ω = 745 rad/s. What is the wave speed? Submit Answer Tries 0/99 What is the linear density of the string Submit Answer Tries o/99

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT