Question

The equation of a transverse wave traveling on a string is given by y A sin(kx - cot). Data: A-22 mm, k-13 rad/m, - 240 rad/s. What is the amplitude? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 What is the wave velocity? Submit Answer Tries 0/99 What is the wavelen Submit Answer Tries 0/99 For the same wave, find the maximum transverse speed of a particle in the string. Submit Answer Tries 0/99

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1) amplitude A =22 mm = 22*10-3 m

2) frequency f = \omega /2\pi = 240/(2\pi) = 38.19 Hz

3) velocity = \omega /k = 240/13 = 18.46 m/s

4) wavelength \lambda = 2\pi/k = 2\pi/13 = 0.483 m

5) For a particle undergoing simple hormonic motion , its max speed v = \omega A = 240 * 22*10-3 = 5.28 m/s

Add a comment
Know the answer?
Add Answer to:
The equation of a transverse wave traveling on a string is given by y A sin(kx...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The equation of a transverse wave traveling on a string is given by y - A...

    The equation of a transverse wave traveling on a string is given by y - A sin(kx - ot) Data: A-22 mm, k-13 rad/m, 240 rad/s. What is the amplitude? Submit Answer Tries 0/99 What is the frequency? Submit Answer Tries 0/99 What is the wave velocity? Submit Answer Tries 0/99 What is the wavelength? Submit Answer Tries 0/99 For the same wave, find the maximum transverse speed of a particle in the string. Submit Answer Tries 0/99

  • The equation of a transverse wave traveling in a string is given by y-A sin(kx-at). The...

    The equation of a transverse wave traveling in a string is given by y-A sin(kx-at). The tension in the string is 18.0 N, A-1 mm, k = 26 rad/m, ω = 745 rad/s. What is the wave speed? Submit Answer Tries 0/99 What is the linear density of the string Submit Answer Tries o/99

  • The equation of a transverse wave traveling on a string is given by y = A...

    The equation of a transverse wave traveling on a string is given by y = A sin(kx - ωt) . Data: A=11 mm, k=35 rad/m, ω= 500 rad/s. 1) What is the amplitude? 2) What is the frequency? 3) What is the wave velocity? 4) What is the wavelength? 5) For the same wave, find the maximum transverse speed of a particle in the string.

  • The equation of a transverse wave traveling in a string is given by y = A...

    The equation of a transverse wave traveling in a string is given by y = A sin(kx-at). The tension in the string is 18.0 N, A What is the wave speed? 1 mm, k = 26 rad/m, ω 745 rad/s Submit Answer Tries 0/99 What is the linear density of the string. Submit Answer Tries 0/99

  • The equation of a transverse wave traveling along a very long string is y = 3.96...

    The equation of a transverse wave traveling along a very long string is y = 3.96 sin(0.0444πx+ 7.89πt), where x and y are expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 1.05 cm when t = 0.843 s?

  • The equation of a transverse wave traveling along a very long string is y = 6.28...

    The equation of a transverse wave traveling along a very long string is y = 6.28 sin(0.0223πx+ 3.63πt), where x and yare expressed in centimeters and t is in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x = 4.95 cm when t = 0.876 s?

  • The equation of a transverse wave traveling along a very long string is given by y...

    The equation of a transverse wave traveling along a very long string is given by y = 6.1 sin(0.018πx + 3.1πt), where x and y are expressed in centimeters and t is in seconds. Determine the following values. (a) the amplitude cm (b) the wavelength cm (c) the frequency Hz (d) the speed cm/s (e) the direction of propagation of the wave +x−x    +y−y (f) the maximum transverse speed of a particle in the string cm/s (g) the transverse displacement at...

  • The equation of a transverse wave traveling along a very long string is y = 6.93...

    The equation of a transverse wave traveling along a very long string is y = 6.93 sin(0.0395x+361), where and are expressed in centimeters and ta in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency. (d) the speed, (e) the direction of propagation of the wave and in the maximum transverse speed of a particle in the string (e) What is the transverse displacement at x4.63 cm whent 0.510 (a) Number Units (b) Number Units (c) Number Units...

  • The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+...

    The equation of a transverse wave traveling along a very long string is y= 4.61 sin(0.0599πχ+ 9.2От), where x and y are expressed in centimeters and tis in seconds. Determine (a) the amplitude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the direction of propagation of the wave and (f) the maximum transverse speed of a particle in the string. (g) What is the transverse displacement at x= 602 cm when t= 0.343 s? Unitsl cm (a) NumberT4.61...

  • The equation that describes a transverse wave on a string is y = (0.0120 m)sin[(394 rad/s)t...

    The equation that describes a transverse wave on a string is y = (0.0120 m)sin[(394 rad/s)t - (3.00 rad/m)x] where y is the displacement of a string particle and x is the position of the particle on the string. The wave is traveling in the +x direction. What is the speed v of the wave?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT