Question

An object is 18.6 cm to the left of a lens with a focal length of 13.6 cm. A second lens of focal length 16.0 cm is 61.79 cm

0 0
Add a comment Improve this question Transcribed image text
Answer #1


t = 13.6cm 5,= 18.6 cm I ttt t.t-1 おすすてらす。 13.6 186 S = 50.6cm The image of tisst lens wooks as object of and lang S2 = 61.29

Add a comment
Know the answer?
Add Answer to:
An object is 18.6 cm to the left of a lens with a focal length of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A diverging lens with a focal length of -19.8 cm and a converging lens with a...

    A diverging lens with a focal length of -19.8 cm and a converging lens with a focal length of 17.9 cm have a common central axis. Their separation is 37.3 cm. An object of height 1.0 cm is 28.2 cm in front of the diverging lens, on the common central axis. Find the location of the final image produced by the combination of the two lenses. Where is the image located as measured from the converging lens? Submit Answer Tries...

  • A converging lens with a focal length of 6.0 cm is located 24.0 cm to the...

    A converging lens with a focal length of 6.0 cm is located 24.0 cm to the left of a diverging lens having a focal length of -13.0 cm. If an object is located 11.0 cm to the left of the converging lens, locate and describ completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? 63.81 cm Submit Answer Incorrect. Tries 3/10 Previous Tries What is the magnification? Submit Answer...

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

  • A real object is 13.6 cm to the left of a thin, diverging lens having a focal length of magnitude 24.5 cm.

    A real object is 13.6 cm to the left of a thin, diverging lens having a focal length of magnitude 24.5 cm. (a) is the sign of the focal length negative or positive? negative positive (b) Find the image distance. (c) Find the magnification. (d) State whether the image is real or virtual. real virtual (e) State whether the image is upright or inverted. upright inverted

  • An object is 22.0 cm to the left of a lens that has a focal length...

    An object is 22.0 cm to the left of a lens that has a focal length of +8.50 cm. A second lens, which has a focal length of -29.0 cm, is 5.80 cm to the right of the first lens. (a) Find the distance between the object and the final image formed by the second lens. (b) What is the overall magnification? Please help with parts A and B. Thanks! An object is 22.0 cm to the left of a...

  • 1.) An object is placed in front of a diverging lens with a focal length of...

    1.) An object is placed in front of a diverging lens with a focal length of 17.7 cm. For each object distance, find the image distance and the magnification. Describe each image. (a) 35.4 cm location _____cm magnification _____ nature real virtual upright inverted (b) 17.7 cm location _____  cm magnification _____ nature real virtual upright inverted (c) 8.85 cm location _____ cm magnification _____ nature real virtual upright inverted 2.) An object is placed in front of a converging lens...

  • A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal...

    A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position cm height cm Is the image inverted or upright? O upright inverted Is the image real or virtual? Oreal virtual

  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • Consider a converging lens whose focal length is 6.95 cm. An object is placed on the...

    Consider a converging lens whose focal length is 6.95 cm. An object is placed on the axis of the lens at a distance of 13.5 cm from the lens. How far is the object's image from the lens? image distance:   cm If it can be determined, is the image real or virtual? cannot be determined real virtual If it can be determined, is the image upright or inverted with respect to the object? cannot be determined inverted upright

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT