Question

In natural gas liquefaction plant the propane is following the cycle below ws Point 2: 2 T2-70 C P 2 MPs Point 1: high P 1 lo
0 0
Add a comment Improve this question Transcribed image text
Answer #1

h=3Hh (2/0 h-D.25.HPa from table P-2 APa P- 0.2sc4 Pa 8,=1.772 AJ/A 46.9 b3 0 lomfeasrsor duty (hz-hi) X 16. 155 HJ 11 lralor

Add a comment
Know the answer?
Add Answer to:
In natural gas liquefaction plant the propane is following the cycle below ws Point 2: 2...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid....

    A two-stage compression refrigeration system with an adiabatic liquid-vapor separation unit uses refrigerant-134a as working fluid. The system operates the evaporator at 0.4 MPa, the condenser at 1.6 MPa, and the separator at 0.8 MPa. The compressors use 25 kW of power. Given that the refrigerant is saturated liquid at the inlet of each expansion valve and saturated vapor at the inlet of each compressor, and the compressors are isentropic: (0) show the process on a T-s diagram; ) calculate...

  • Please help with HW 37 Qoutl condenser Condenser A standard 4-component vapor-compression cycle using R-134a is...

    Please help with HW 37 Qoutl condenser Condenser A standard 4-component vapor-compression cycle using R-134a is shown in the figure to the right. The cycle is used as a refrigeration cycle to cool a refrigerator at 5 °C with a cooling capacity of 200 W, with a heat transfer to a kitchen at 20 °C. Assume that the pressure drops in the evaporator and condenser are negligible, and that the compressor and expansion valve are adiabatic. Take the boundary temperature...

  • Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system s...

    Please also draw the T-S diagrams and PH diagrams to facilitate understanding. Thank you. 5. The refrigeration system shown below is another variation of the basic vapor compression refrigeration system which attempts to reduce the compression work. In this system, a heat exchanger is used to superheat the vapor entering the compressor while sub-cooling the liquid exiting from the condenser Consider a system of this type that uses refrigerant-134a as its refrigerant and operates the evaporator at -10°C, and the...

  • Pressure limits in a two-stage cooling system are 0.9 MPa and 250kPa. Refrigerant condenser comes out...

    Pressure limits in a two-stage cooling system are 0.9 MPa and 250kPa. Refrigerant condenser comes out as saturated liquid and works at 700kPa pressure reduced to the pressure of the evaporation chamber. Meanwhile, some of the refrigerant evaporates and is mixed with the fluid from the low pressure compressor. The mixture is then It is compressed to condenser pressure with high pressure compressor. The liquid in the evaporation chamber is reduced to evaporator pressure and draws heat from the cooled...

  • 120; = ? 2 (P2 = 1000 kPa; T2 = 65 °C) Problem 5. A compression...

    120; = ? 2 (P2 = 1000 kPa; T2 = 65 °C) Problem 5. A compression refrigeration cycle (see Figure) has R-134a as the refrigerant. The mass flow rate is 3 kg/min. The refrigerant goes through isothermal evaporation in the evaporator and leaves the evaporator at -20 °C as saturated vapor. It enters the condenser with a pressure of 1 MPa and a temperature of 65 °C. Assume no losses in the pipelines connecting different components. Also assume steady state...

  • Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as...

    Condenser Compressor An ideal vapor-compression refrigeration cycle is modified to include a counter-flow heat exchanger as shown. Refrigerant 134a leaves the evaporator as saturated vapor at 0.10 MPa and is heated at constant pressure to 20°C before entering the compressor. Following isentropic compression to 1.4 MPa, the refrigerant passes through the condenser and exits at 45°C and 1.4 MPa. The liquid then passes through the heat exchanger and enters the expansion valve at 1.4 MPa. The mass flow rate of...

  • A vapo the condenser is saturated liquid with an enthalpy of 220 kJ/kg. The outlet stream of the ...

    A vapo the condenser is saturated liquid with an enthalpy of 220 kJ/kg. The outlet stream of the evaporator has a absolute pressure of 0.1 MPa, and is superheated vapor that is 30 °C above the dew point. a) (7 points) If the outlet stream of the compressor is superheated vapor at 90 °C, what is the efficiency of the compressor? AH H3- H2, (AH)s - H3-H2 b) (6 points) Calculate the coefficient of performance for this refrigerator r-compression refrigeration...

  • In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There...

    In a vapor-compression refrigeration cycle, ammonia exits the evaporator as saturated vapor at -22 °C. There are irreversibilities in the compressor. The refrigerant enters the condenser at 16 bar and 160 °C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Calculate the coefficient of performance, b, and the isentropic compressor efficiency, defined as: 2s Condenser Expansion...

  • DI/ A two-stage vapor compression cycle with 15 TR (refrigeration capacity) using ammonia as a refigerant...

    DI/ A two-stage vapor compression cycle with 15 TR (refrigeration capacity) using ammonia as a refigerant is carried out with water and flash inter-cooling and water sub-cooling as shown in figure 1 The operating pressure of the condenser is 12 bars, and the evaporator is 3 bars, while the flash tank operating pressure is 6 bars. The limiting temperature for inter-cooling and sub-cooling is 20 °C. Draw the cycle on p-H diagram showing all points, and then find the power...

  • In a refrigeration cycle showed in the figure below, refrigerant 134 was used as the working...

    In a refrigeration cycle showed in the figure below, refrigerant 134 was used as the working fluid to remove 1. heat from the cooling chamber (condenser). The refrigerant was flowing through a pipe having inside diameter 11mm during the whole cycle. Just after expansion, the refrigerant was found to be a mixture of liquid and vapor in which liquid is found to be 60%. The mixture was flowing with a velocity of 164 ft/sec at pressure of 0.2 Mpa. Calculate...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT