Question

eral examples in everyday life of motion that is at least of sev ely simple harmonic. In what respects does each differ fhom SHEMt : The analysis simple pass of the spring. f Siis of simple harmonic motion in this chapter ignored the frequency of the motion? Explain your reasoning How would the springs mass affect the period
0 0
Add a comment Improve this question Transcribed image text
Answer #1

In Simple harmonic motion, the restoring force (F) is proportional to the displacement (x). In other words, there’s a distance an object travels then a force pulls it back to its original position—then this repeats over and over.

we can define it with simple equation F = -K * X where F is force and X is displacement from equilibrium and K is a constant

e.g. (1)- Pendulum of a cock - Ideally if the clock is working fine it should be same as SHM but of battery is low it will leave SHM and start damping and slowly top moving

(2)-Guitar strings - if the string is following the same path and coming in the same palace, again and again, its SHM but as we use the guitar to make different voices it doesn't follow actual SHM

Add a comment
Know the answer?
Add Answer to:
eral examples in everyday life of motion that is at least of sev ely simple harmonic....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1. Give two examples whose motion is described by simple harmonic motion. (Besides mass-spring system) 2....

    1. Give two examples whose motion is described by simple harmonic motion. (Besides mass-spring system) 2. The equation of motion for a mass of 100g in a mass-spring system is 2nt x(t) = 3Cos(f 3 Find the value of spring constant k.

  • A 0.50 kg mass oscillates in simple harmonic motion on a spring with a spring constant...

    A 0.50 kg mass oscillates in simple harmonic motion on a spring with a spring constant of 210 N/m . Part A What is the period of the oscillation? Part B What is the frequency of the oscillation?

  • Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x...

    Can you please answer both questions, Y=0 Problem3 A (2+0.1y) kg block attached to a spring undergoes simple harmonic motion described by x (30 cm) cos[(6.28 rad/s)t + /4) Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed (e) maximum acceleration of the block, and (e) the total energy of the spring-block. of the block Problem 4 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 + y)...

  • z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by...

    z waqod A 2- kg block attached to a spring undergoes simple harmonic motion described by = (30 cm) cos[(6.28 rad/s)t + /4]. Determine (a) the amplitude, (b) the spring constant, (c) the frequency, (d) the maximum speed of the block, (e) maximum acceleration of the block, and (e) the total energy of the spring-block. Problem 3 A block attached to a spring, undergoes simple harmonic motion with a period of 1.5 s, and amplitude of 20 cm. The mechanical...

  • Homework: Simple Harmonic Motion Name: 1. A 4.5-kg block is hung from a spring causing the...

    Homework: Simple Harmonic Motion Name: 1. A 4.5-kg block is hung from a spring causing the spring to elongate 12 cm. (a) What is the spring constant for this spring? (b) If the spring was stretched 18 cm and released, what will be the period of oscillation? 2. What mass on a spring with a spring constant of 160 N/m will oscillate with a period of 2.0 s? 3. A mass of 240 g oscillates on a spring on a...

  • 10. A 1.5 kg mass is attached to the end set into simple harmonic motion wit...

    10. A 1.5 kg mass is attached to the end set into simple harmonic motion wit ned to the end of a horizontal spring of spring constant 60 N/m and a. What is the maximum potential energy of the system? b. What is the frequency of vibration? c. What is the period of vibration?

  • Exercise 11: Simple Harmonic Motion 1. A spring-mass system oscillates with a frequency of 10 Hz...

    Exercise 11: Simple Harmonic Motion 1. A spring-mass system oscillates with a frequency of 10 Hz when the mass is equal to 0.50 kg. What is the stiffness of the spring? With the same spring, what would the mass need to be to double the frequency? 2. A pendulum swings with a period of 1.50 seconds when the acceleration due to gravity is equal to 9.80 m/s? What is the length of the pendulum? How would this period change if...

  • A spring-mass system is in simple harmonic motion. How do the period, maximum speed, frequency, and...

    A spring-mass system is in simple harmonic motion. How do the period, maximum speed, frequency, and total mechanical energy of the oscillator change after each of the following alterations (up, down or no change): a) Spring constant (k) is increased? b) Amplitude id increased? c) Mass is decreased?

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. (a) Amplitude = (b) Time Period = ( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (f) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block system

  • 1. A simple harmonic motion of an object of mass m = 11 kg attached with...

    1. A simple harmonic motion of an object of mass m = 11 kg attached with a spring is represented as time vs displacement graph in the following figure. Find the following parameters. ТАЛААР (a) Amplitude = (b) Time Period =( time for 1 wavelength distance) (c) Frequency = (d) Spring Constant = (e) Angular frequency = (1) Maximum Potential Energy stored in the spring (g) Maximum Kinetic Energy of the block (h) total energy of the spring -block system

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT