Question

A proton is released from rest at point A in a constant electric field and accelerates to point B (see part a of the drawing). An electron is released from rest at point 8 and accelerates to point A (see part b of the drawing). How does the change in the protons electric potential energy compare with the change in the electrons electric potential energy? O The proton experiences a greater change in electric potential energy, since it has a greater charge magnitude. O The proton experiences a smaller change in electric potential energy, since it has a smaller charge magnitude. O One cannot compare the change in potential energies because the proton and electron move in opposite directions. O The change in the protons electric potential energy is the same as the change in the electrons electric potential energy O The proton experiences a smaller change in electric potential energy, since it has a smaller speed at 8 than the electron has at A. This is due to the larger mass of the proton. 0
1 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A proton is released from rest at point A in a constant electric field and accelerates...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A constant electric field accelerates a proton from rest through a distance of 1.65 m to...

    A constant electric field accelerates a proton from rest through a distance of 1.65 m to a speed of 1.81 ✕ 105 m/s. (The mass and charge of a proton are mp = 1.67 ✕ 10−27 kg and qp = e = 1.60 ✕ 10−19 C.) HINT (a) Find the change in the proton's kinetic energy (in J). J (b) Find the change in the system's electric potential energy (in J). J (c) Calculate the magnitude of the electric field...

  • A constant electric field accelerates a proton from rest through a distance of 1.65 m to...

    A constant electric field accelerates a proton from rest through a distance of 1.65 m to a speed of 1.77 ✕ 105 m/s. (The mass and charge of a proton are mp = 1.67 ✕ 10−27 kg and qp = e = 1.60 ✕ 10−19 C.) HINT (a) Find the change in the proton's kinetic energy (in J). J (b) Find the change in the system's electric potential energy (in J). J (c) Calculate the magnitude of the electric field...

  • 8: A: An electron and a proton are released from rest in a constant electric field...

    8: A: An electron and a proton are released from rest in a constant electric field with a magnitude of 200N/M. Compare the magnitude and direction of the force felt by each charge. Ignore the small attractive force between the electron and proton. B: Compare the magnitude of the acceleration of each charge. How far does each charge move in the first 1.0us? Use m,-1.67x10"kg and m.-9.11x103"kg.

  • 8: A: An electron and a proton are released from rest in a constant electric field...

    8: A: An electron and a proton are released from rest in a constant electric field with a magnitude of 200N/w. Compare the magnitude and direction of the force felt by each charge. Ignore the small attractive force between the electron and proton. B: Compare the magnitude of the acceleration of each charge. How far does each charge move in the first 1.0us ? Use m,-1.67x10 kg and m,-9.11x10kg

  • 8: A: An electron and a proton are released from rest in a constant electric field...

    8: A: An electron and a proton are released from rest in a constant electric field with a magnitude of 200N/m. Compare the magnitude and direction of the force felt by each charge. Ignore the small attractive force between the electron and proton. B: Compare the magnitude of the acceleration of each charge. How far does each charge move in the first 1.0us? Use m,-1.67x10 kg and m-9.11x10 kg.

  • Practice Problem: Electric Potential Energy (15 min.) A proton is at rest in an electric field,...

    Practice Problem: Electric Potential Energy (15 min.) A proton is at rest in an electric field, has a potential energy of 4.8. 10-19), and experiences a force of 1.2.10-'N to the right. If the proton is moved to the right by 1.0 10-10m, what is the proton's new electric potential energy? (Hint: find the work done on the proton) Practice Problem: Electric Potential [15 min.] A charge at rest, q = -1°C, moves from a location with an electric potential...

  • PROBLEM (a) Find the speed of the proton at x 0.0500 m if s released from...

    PROBLEM (a) Find the speed of the proton at x 0.0500 m if s released from rest at x -2.00 cm in a constant electric field with magnitude 1.50 x 103 N/C, pointing in the positive direction. (b) Find the initial speed of an electron fired from x 2.00 cm given that its speed has fallen by half when it reaches x 0.120 m STRATEGY Apply conservation of energy, solving for the unknown speeds. Part (b) involves two equations: the...

  • 2. -5.00 cm from rest in a constant electric field with magnitude 2.50 x103 N/C pointing A proton is released at...

    2. -5.00 cm from rest in a constant electric field with magnitude 2.50 x103 N/C pointing A proton is released at in the positive y-direction. a. Determine the change in electrical potential energy of the proton when is it at x-2.60 cm. Did the proton gain or lose potential energy? b. Find the final speed of the proton at x 2.60 cm. [mass of proton 1.67 x 1027kg; charge of proton +1.60 x 1019C] 2. -5.00 cm from rest in...

  • earning & Assessment A proton is released from rest in a uniform electric field of magnitude...

    earning & Assessment A proton is released from rest in a uniform electric field of magnitude 1.6 × 103 V/m di- rected along the positive r axis. The proton undergoes a displacement of 0.3 m in the di io of theethe lds shown in the figure. 1.6 × 105 V/m 0.3 m Find the change in the electric potential if the proton moves from the point A to B. The mass of a proton is 1.672623 × 10-27 kg. Answer...

  • Question (part 1 of 3) A proton is released from rest in a uniform electric field...

    Question (part 1 of 3) A proton is released from rest in a uniform electric field of magnitude 1.3 x 10% V/m di- rected along the positive z axis. The protorn undergoes a displacement of 0.6 m in the di- rection of the electric field as shown in the Previous Responses ธ1.78000 #2. 7.8 #3.780000 X figure. 1.3 × 105 V/m t0 Find the change in the electrie potential if the proton moves from the point A to B. The...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT