Problem

For the cascode amplifier of Fig. 4.143 determinea. the base and collector currents of eac...

For the cascode amplifier of Fig. 4.143 determine

a. the base and collector currents of each transistor.


b. the voltages

FIG. 4.143

Step-by-Step Solution

Solution 1

(a)

Calculate base voltage \(\left(V_{B_{4}}\right)\) of transistor \(\left(Q_{1}\right)\)

$$ V_{B_{1}}=\frac{R_{B_{3}} V_{C C}}{R_{B_{1}}+R_{B_{2}}+R_{B_{3}}} $$

Here,

Supply voltage \(\left(V_{C C}\right)\) is \(22 \mathrm{~V}\)

Base resistance \(\left(R_{B_{3}}\right)\) is \(3.3 \mathrm{k} \Omega\)

Base resistance \(\left(R_{B_{2}}\right)\) is \(4.7 \mathrm{k} \Omega\),

Base resistance \(\left(R_{B_{1}}\right)\) is \(8.2 \mathrm{k} \Omega\).

Substitute \(20 \mathrm{~V}\) for \(V_{C C}, 3.3 \mathrm{k} \Omega\) for \(\left(R_{B_{2}}\right), 4.7 \mathrm{k} \Omega\) for \(\left(R_{B_{2}}\right)\) and \(8.2 \mathrm{k} \Omega\) for \(\left(R_{B_{1}}\right)\) in the expression of base voltage \(\left(V_{B_{1}}\right)\)

$$ \begin{aligned} V_{B_{1}} &=\frac{(3.3 \mathrm{k} \Omega)(20 \mathrm{~V})}{(3.3 \mathrm{k} \Omega)+(4.7 \mathrm{k} \Omega)+(8.2 \mathrm{k} \Omega)} \\ &=\frac{\left(3.3 \times 10^{3} \Omega\right)(20 \mathrm{~V})}{\left(3.3 \times 10^{3} \Omega\right)+\left(4.7 \times 10^{3} \Omega\right)+\left(8.2 \times 10^{3} \Omega\right)} \\ &=4.48 \mathrm{~V} \end{aligned} $$

Calculate emitter voltage \(\left(V_{E_{1}}\right)\) of transistor \(\left(Q_{1}\right)\).

$$ V_{E_{1}}=V_{B_{1}}-V_{B E_{1}} $$

Here,

Base emitter voltage \(\left(V_{B E_{1}}\right)\) of transistor \(\left(Q_{1}\right)\) is \(0.7 \mathrm{~V}\).

Substitute \(0.7 \mathrm{~V}\) for \(\left(V_{B E_{1}}\right)\) and \(4.48\) for \(\left(V_{B_{1}}\right)\) in the expression of emitter voltage \(\left(V_{E_{1}}\right)\).

$$ \begin{aligned} V_{E_{1}} &=4.48 \mathrm{~V}-0.7 \mathrm{~V} \\ &=3.78 \mathrm{~V} \end{aligned} $$

From the circuit collector current \(\left(I_{C_{1}}\right)\) is nearly same as emitter current \(\left(I_{E_{1}}\right)\).

$$ I_{E_{1}} \cong I_{E_{2}} \cong I_{C_{2}} \cong I_{C_{1}} $$

Calculate collector currents \(\left(I_{C_{1}}\right)\) and \(\left(I_{C_{2}}\right)\), emitter currents \(\left(I_{E_{1}}\right)\) and \(\left(I_{E_{2}}\right) .\)

$$ I_{E_{1}} \cong I_{E_{2}} \cong I_{c_{2}} \cong I_{C_{1}}=\frac{V_{E_{1}}}{R_{E_{1}}} $$

Here, emitter resistance \(\left(R_{E_{1}}\right)\) of transistor \(\left(Q_{1}\right)\) is \(1.1 \mathrm{k} \Omega\)

Substitute \(1.1 \mathrm{k} \Omega\) for \(\left(R_{E_{1}}\right)\) and \(3.78 \mathrm{~V}\) for \(\left(V_{E_{1}}\right)\) in the expression of collector current \(\left(I_{C_{\mathrm{i}}}\right)\)

$$ \begin{aligned} I_{E_{1}} \cong I_{E_{2}} \cong I_{C_{2}} \cong I_{C_{1}} &=\frac{3.78 \mathrm{~V}}{1.1 \mathrm{k} \Omega} \\ &=\frac{3.78 \mathrm{~V}}{1.1 \times 10^{3} \Omega} \\ &=3.44 \mathrm{~mA} \end{aligned} $$

Hence, collector current \(\left(I_{C_{1}}\right)\) is \(3.44 \mathrm{~mA}\) and collector current \(\left(I_{C_{2}}\right)\) is \(3.44 \mathrm{~mA}\)

Calculate base current \(\left(I_{B_{1}}\right)\) of transistor \(\left(Q_{1}\right)\).

$$ I_{B_{1}}=\frac{I_{C_{1}}}{\beta_{1}} $$

Here,

Forward common emitter gain \(\left(\beta_{1}\right)\) is 60 .

Substitute 60 for \(\left(\beta_{1}\right)\) and \(3.44 \mathrm{~mA}\) for \(\left(I_{C_{1}}\right)\) in the expression of base current \(\left(I_{B_{1}}\right)\).

$$ \begin{aligned} I_{B_{1}} &=\frac{3.44 \mathrm{~mA}}{60} \\ &=\frac{3.44 \times 10^{-3} \mathrm{~A}}{60} \\ &=57.33 \mu \mathrm{A} \end{aligned} $$

Hence, the base current \(\left(I_{B_{1}}\right)\) is \(57.33 \mu \mathrm{A}\).

Calculate base current \(\left(I_{B_{2}}\right)\) of transistor \(\left(Q_{2}\right)\).

$$ I_{B_{2}}=\frac{I_{C_{2}}}{\beta_{2}} $$

Here,

Forward common emitter gain \(\left(\beta_{2}\right)\) is 120 .

Substitute 120 for \(\left(\beta_{2}\right)\) and \(3.44 \mathrm{~mA}\) for \(\left(I_{C_{2}}\right)\) in the expression of base current \(\left(I_{B_{2}}\right)\).

$$ \begin{aligned} I_{B_{2}} &=\frac{3.44 \mathrm{~mA}}{120} \\ &=\frac{3.44 \times 10^{-3} \mathrm{~A}}{120} \\ &=28.67 \mu \mathrm{A} \end{aligned} $$

(b)

Calculate base voltage \(\left(V_{B_{i}}\right)\) of transistor \(\left(Q_{1}\right)\)

$$ V_{B_{1}}=\frac{R_{B_{3}} V_{C C}}{R_{B_{1}}+R_{B_{2}}+R_{B_{3}}} $$

Here,

Supply voltage \(\left(V_{C C}\right)\) is \(22 \mathrm{~V}\)

Base resistance \(\left(R_{B_{3}}\right)\) is \(3.3 \mathrm{k} \Omega\),

Base resistance \(\left(R_{B_{2}}\right)\) is \(4.7 \mathrm{k} \Omega\)

Base resistance \(\left(R_{B_{i}}\right)\) is \(8.2 \mathrm{k} \Omega\).

Substitute \(20 \mathrm{~V}\) for \(V_{C C}, 3.3 \mathrm{k} \Omega\) for \(\left(R_{B_{3}}\right), 4.7 \mathrm{k} \Omega\) for \(\left(R_{B_{2}}\right)\) and \(8.2 \mathrm{k} \Omega\) for \(\left(R_{B_{4}}\right)\) in the expression of base voltage \(\left(V_{B_{1}}\right)\)

$$ \begin{aligned} V_{B_{1}} &=\frac{(3.3 \mathrm{k} \Omega)(20 \mathrm{~V})}{(3.3 \mathrm{k} \Omega)+(4.7 \mathrm{k} \Omega)+(8.2 \mathrm{k} \Omega)} \\ &=\frac{\left(3.3 \times 10^{3} \Omega\right)(20 \mathrm{~V})}{\left(3.3 \times 10^{3} \Omega\right)+\left(4.7 \times 10^{3} \Omega\right)+\left(8.2 \times 10^{3} \Omega\right)} \\ &=4.48 \mathrm{~V} \end{aligned} $$

Calculate base voltage \(\left(V_{B_{2}}\right)\) of transistor \(\left(Q_{1}\right)\)

$$ V_{B_{2}}=\frac{\left(R_{B_{2}}+R_{B_{y}}\right) V_{C C}}{R_{B_{1}}+R_{B_{2}}+R_{B_{3}}} $$

Substitute \(20 \mathrm{~V}\) for \(V_{C C^{+}} 3.3 \mathrm{k} \Omega\) for \(\left(R_{B_{3}}\right), 4.7 \mathrm{k} \Omega\) for \(\left(R_{B_{2}}\right)\) and \(8.2 \mathrm{k} \Omega\) for \(\left(R_{B_{1}}\right)\) in the expression of base voltage \(\left(V_{B_{2}}\right) .\)

$$ \begin{aligned} V_{B_{2}} &=\frac{\{(4.7 \mathrm{k} \Omega)+(8.2 \mathrm{k} \Omega)\}(20 \mathrm{~V})}{\left(3.3 \mathrm{k} \Omega^{3}\right)+(4.7 \mathrm{k} \Omega)+(8.2 \mathrm{k} \Omega)} \\ &=\frac{\left\{\left(4.7 \times 10^{3} \Omega\right)+\left(8.2 \times 10^{3} \Omega\right)\right\}(20 \mathrm{~V})}{\left(3.3 \times 10^{3} \Omega\right)+\left(4.7 \times 10^{3} \Omega\right)+\left(8.2 \times 10^{3} \Omega\right)} \\ &=10.86 \mathrm{~V} \end{aligned} $$

Calculate emitter voltage \(\left(V_{E_{1}}\right)\) of transistor \(\left(Q_{1}\right)\).

$$ V_{E_{1}}=V_{B_{1}}-V_{B E_{1}} $$

Here,

Base emitter voltage \(\left(V_{B E_{1}}\right)\) of transistor \(\left(Q_{1}\right)\) is \(0.7 \mathrm{~V}\).

Substitute \(0.7 \mathrm{~V}\) for \(\left(V_{B E_{1}}\right)\) and \(4.48\) for \(\left(V_{B_{1}}\right)\) in the expression of emitter voltage \(\left(V_{E_{1}}\right)\).

$$ \begin{aligned} V_{E_{1}} &=4.48 \mathrm{~V}-0.7 \mathrm{~V} \\ &=3.78 \mathrm{~V} \end{aligned} $$

Calculate emitter voltage \(\left(V_{E_{2}}\right)\) of transistor \(\left(Q_{2}\right)\)

$$ V_{E_{2}}=V_{B_{2}}-V_{B E_{2}} $$

Substitute \(0.7 \mathrm{~V}\) for \(\left(V_{B E_{2}}\right)\) and \(10.86\) for \(\left(V_{B_{2}}\right)\) in the expression of emitter voltage \(\left(V_{E_{2}}\right)\)

$$ \begin{aligned} V_{E_{1}} &=10.86 \mathrm{~V}-0.7 \mathrm{~V} \\ &=10.16 \mathrm{~V} \end{aligned} $$

Calculate collector voltage \(\left(V_{c_{1}}\right)\) of transistor \(Q_{1}\)

$$ V_{C_{1}}=V_{B_{2}}-V_{B E_{2}} $$

Substitute \(0.7 \mathrm{~V}\) for \(\left(V_{B E_{2}}\right)\) and \(10.86 \mathrm{~V}\) for \(\left(V_{B_{2}}\right)\) in the expression of collector voltage \(\left(V_{C_{1}}\right)\)

$$ \begin{aligned} V_{E_{1}} &=10.86 \mathrm{~V}-0.7 \mathrm{~V} \\ &=10.16 \mathrm{~V} \end{aligned} $$

Calculate collector voltage \(\left(V_{C_{2}}\right)\) of transistor \(Q_{2}\)

$$ V_{C_{2}}=V_{C C}-I_{C_{2}} R_{C_{2}} $$

Here,

Collector resistance \(\left(R_{C_{2}}\right)\) of transistor \(Q_{2}\) is \(2.2 \mathrm{k} \Omega\)

Substitute \(22 \mathrm{~V}\) for \(\left(V_{C C}\right), 2.2 \mathrm{k} \Omega\) for \(\left(R_{C_{2}}\right)\) and \(3.44 \mathrm{~mA}\) for \(I_{C_{2}}\) in the expression of collector voltage \(\left(V_{C_{2}}\right)\)

$$ \begin{aligned} V_{C_{2}} &=22 \mathrm{~V}-(3.44 \mathrm{~mA})(2.2 \mathrm{k} \Omega) \\ &=22 \mathrm{~V}-\left(3.44 \times 10^{-3} \mathrm{~A}\right)\left(2.2 \times 10^{3} \Omega\right) \\ &=14.43 \mathrm{~V} \end{aligned} $$

Add your Solution
Textbook Solutions and Answers Search